Neurochemical Research

, Volume 11, Issue 4, pp 497–504 | Cite as

Somatostatin effects on the cyclic AMP system and lipid metabolism in mouse brain

  • R. E. Catalan
  • A. M. Martinez
  • B. G. Miguel
  • A. Robles
  • M. D. Aragones
Original Articles


The effect of somatostatin on cyclic AMP-protein kinase system and lipid metabolism was studied in mouse brain. Subcutaneous injection of the peptide decreased the cyclic AMP and cyclic GMP levels (70% and 60% respectively) as well as protein kinase and triglyceride lipase activities (30%). Cyclic AMP binding protein activity was not affected. Experiments carried out with [14C]acetate as precursor of lipids seem to indicate that somatostatin blocks the fatty acid turnover. On the other hand, the general decrease of32P incorporation into all phospholipids by somatostatin suggests that the peptide interferes with the precursor uptake into phospholipids. The findings reported here indicate that somatostatin has a role on brain metabolism and further add more data in support for its neuromodulating action.


Lipase Triglyceride Lipase Kinase System Binding Protein Activity Neuromodulating Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pimstone, B. L., andBerelowitz, M. 1978, Somatostatin. Paracrine and neuromodulator peptides in gut and nervous system. S. A. Med. J. 53:7–9.Google Scholar
  2. 2.
    Srikant, C. B., andPatel, Y. C. 1981. Somatostatin receptors: Identification and characterization in rat brain membranes. Proc. Nat. Acad. Sci. USA 78:3930–3934.Google Scholar
  3. 3.
    Vale, W., Rivier, C., andBrown, M. 1981. Physiology and pharmacology of hypothalamic regulatory peptides. Pages 165–209,in Morgane, J. P., andPanskepp, J. (eds.), Handbook of the Hypothalamus, Vol. 2, Dekker Inc., New York.Google Scholar
  4. 4.
    Renaud, L. P., Martin, J. B., andBrazeau, P. 1975. Depressant action of TRH, LHRH and somatostatin on activity of central neurones. Nature 255:233–235.Google Scholar
  5. 5.
    Catalan, R. E., Aragones, M. D., andMartinez, A. M. 1979. Somatostatin effect on cyclic AMP and cyclic GMP levels in rat brain. Biochim. Biophys. Acta 586:213–216.Google Scholar
  6. 6.
    Catalan, R. E., Martinez, A. M., andAragones, M. D. 1983. Inhibition of cyclic AMP-dependent protein kinase by somatostatin in slices of mouse brain: dependence on extracellular calcium. Neuropharmacology 22:641–645.Google Scholar
  7. 7.
    Caprino, L., Borrelli, F., Antonetti, F., andCantelmo, A. 1983. Sex-related toxicity of somatostatin and its interaction with pentobarbital and strychnine. Toxicol. Lett. 17:145–149.Google Scholar
  8. 8.
    Dobson, R. A., andJohnson, W. E. 1980. Effects of central nervous system depressant with and without calcium ionophore A23187 on rat cerebellar cyclic guanosine 3′,5′-monophosphate. Res. Commun. Chem. Pharmacol. 29:265–280.Google Scholar
  9. 9.
    Kant, G. J., Muller, T. W., Lenox, R. H., andMeyerhoff, J. L. 1980. In vivo effects of pentobarbital and halothane anesthesia on levels of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in rat brain regions and pituitary. Biochem. Pharmacol. 29:1891–1896.Google Scholar
  10. 10.
    Catalan, R. E., Martinez, A. M., andAragones, M. D. 1984. Evidence for a role of somatostatin in lipid metabolism of liver and adipose tissue. Reg. Peptides 8:147–159.Google Scholar
  11. 11.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  12. 12.
    Catalan, R. E., Aragones, M. D., andMartinez, A. M. 1979. Effect of ecdysterone on the cyclic AMP-protein kinase system in mouse liver. Biochem. Biophys. Res. Commun. 89:44–49.Google Scholar
  13. 13.
    Catalan, R. E., Martinez, A. M., Aragones, M. D., Miguel, B. G., Robles, A., andGodoy, J. E. 1982. Effect of ecdysterone treatment on the cyclic AMP-protein kinase system in adipose tissue. J. Steroid Biochem. 16:573–576.Google Scholar
  14. 14.
    Guder, W., Weiss, L., andWielan, O. 1969. Triglyceride breakdown in rat liver. The demonstration of three different lipases. Biochim. Biophys. Acta 187:173–185.Google Scholar
  15. 15.
    Kaneko, T., Oka, H., Munemura, M., Suzuki, S., Yasuda, H., andOda, T. 1974. Stimulation of guanosine 3′,5′-cyclic monophosphate accumulation in rat anterior pituitary gland in vitro by synthetic somatostatin. Biochem. Biophys. Res. Commun. 61:53–57.Google Scholar
  16. 16.
    Carter, R. F., Bitar, K. N., Zfass, A. M., andMakhlouf, G. M. 1978. Inhibition of VIP-stimulated intestinal secretion and cyclic AMP-production by somatostatin in the rat. Gastroenterology 74:726–730.Google Scholar
  17. 17.
    Curnow, R. T., andLarner, J. 1979. Biochemical actions of Hormones. Pages 77–119,in Litwack, G. (eds.), Academic Press, New York.Google Scholar
  18. 18.
    Dharmsathaphorm, K., Binder, H. J., andDobbins, J. W. 1980. Somatostatin stimulates sodium and chloride absortion in the rabbit ileum. Gastroenterology 78:1559–1565.Google Scholar
  19. 19.
    Leitner, J. W., Rifkin, R. M., Maman, A., andSussman, K. E. 1980. The relationship between somatostatin binding and cyclic AMP-stimulated protein kinase inhibition. Metabolism 29:1065–1074.Google Scholar
  20. 20.
    Reyl, F., andLewin, M. J. M. 1981. Somatostatin is a potent activator of phosphoprotein phosphatase in the digestive tract. Biochim. Biophys. Acta 675:297–300.Google Scholar
  21. 21.
    Mangeat, P., Gespach, C., Marchis-Mouren, G., andRosselin, G. 1982. Differential effects of histamine, vasoactive intestinal polypeptide, prostaglanding E2 and somatostatin on cyclic AMP-dependent protein kinase activation in gastric glands isolated from the guinea pig fundus and antrum. Reg. Peptides 3:155–168.Google Scholar
  22. 22.
    Catalan, R. E., Martinez, A. M., andAragones, M. D. 1984. Somatostatin action on intestinal enzyme systems; effects on protein kinase and acetylcholinesterase activities. Mol. Physiol. 5:149–158.Google Scholar
  23. 23.
    Catalan, R. E., Miguel, B. G., Godoy, J. E., Robles, A., Aragones, M. D., andMartinez, A. M. 1984. Regulation of phosphoprotein phosphatase by somatostatin. Biochem. Med. 31:36–41.Google Scholar
  24. 24.
    Vyvoda, O. S., andRowe, C. E. 1973. Glyceride lipases in nerve endings of guineapig brain and their stimulation by noradrenaline, 5′-hydroxytryptamine and adrenaline. Biochem. J. 132:233–348.Google Scholar
  25. 25.
    Mizobuchi, M., Shirai, K., Matzuoka, N., Saito, Y., andKumagai, A. 1981. Studies on lipase in rat brain. J. Neurochem. 36:301–303.Google Scholar
  26. 26.
    Catalan, R. E., Martinez, A. M., Aragones, M. D., andGodoy, J. E. 1985. Actions of somatostatin on lipid metabolism in mouse cerebral cortex slices. Neurosci. Res. 2:201–204.Google Scholar
  27. 27.
    Hokin, M. R. 1969. Effects of dopamine, gamma-aminobutyric acid and 5-hydroxy-tryptamine on incorporation of32P into phosphatides in slices from the guinea-pig brain. J. Neurochem. 17:357–364.Google Scholar
  28. 28.
    Porcellati, G., Arienti, G., Pirotta, M., andGiorgini, D. 1971. Base-exchange reactions for the synthesis of phospholipids in nervous tissue: The incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes. J. Neurochem. 18:1395–1417.Google Scholar
  29. 29.
    Michell, R. H. 1979. Inositol lipids in membrane function. Trends Biochem. Sci. 4:128–131.Google Scholar
  30. 30.
    Kraicer, J., andSpence, J. W. 1981. Release of growth hormone from purified somatotrophs: use of high K+ and the ionophore A23187 to elucidate interrelations among CA2+, adenosine 3′,5′-monophosphate and somatostatin. Endocrinology 108:651–657.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • R. E. Catalan
    • 1
  • A. M. Martinez
    • 2
  • B. G. Miguel
    • 2
  • A. Robles
    • 2
  • M. D. Aragones
    • 2
  1. 1.Departamento de Bioquímica y Biología Molecular Centro de Biología Molecular (CSIC-UAM)Universidad Autónoma de MadridMadridSpain
  2. 2.Departamento de Bioquímica Facultad de CienciasUniversidad ComplutenseMadridSpain

Personalised recommendations