Kinetics of the 5′-nucleotidase and the adenosine deaminase in subcellular fractions of rat brain

Abstract

Suspensions of rat brain microsomes, synaptosomes, and synaptic vesicles were able to convert adenosine to inosine by means of adenosine deaminase. Isosbestic points of this transformation, at 222, 250 and 281 nm, remained unchanged with time-course. This fact suggests that adenosine deaminase (ADA, E.C. 3.5.4.4) is located on the surface of the vesicles whereas purine nucleoside phosphorylase (PNP, E.C. 2.1.2.4) is located inside the vesicles. Kinetic parameters of the particulate 5′-nucleotidase (5′N, E.C. 3.1.3.5) and adenosine deaminase were analogous to those of the cytosolic enzymes. These results suggest that soluble and particulate enzymes represent different pools of the same molecular species.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Phillips, E., andNewsholme, E. A. 1979. Maximum activities, properties and distribution of 5′-nucleotidase, adenosine kinase and adenosine deaminase in rat and human brain. J. Neurochem. 33:553–558.

    Google Scholar 

  2. 2.

    Trams, E. G., andLauter, C. J. 1975. Adenosine deaminase in cultured brain cells. Biochem. J. 152:681–687.

    Google Scholar 

  3. 3.

    Franco, R., Canela, E. I., andBozal, J. 1986. Heterogeneous localization of some purine enzymes in subcellular fractions of rat brain and cerebellum. Neurochem Res. In press.

  4. 4.

    Tamir, H., Rapport, M. M. andRoizin, L. 1974. Preparation of synaptosomes and vesicles with sodium diatrizoate. J. Neurochem 23:943–949.

    Google Scholar 

  5. 5.

    Soller, M., Koenig, H., Milroie, R., Hughes, C., andLu, C. Y. 1973. Isolation and characterization of soluble acidic lipoproteins from rat brain synaptic vesicles. J. Neurochem 21:557–572.

    Google Scholar 

  6. 6.

    Reich, J. G., Wangermann, G., Falck, M., andRhode, K. 1972. A general strategy for parameter stimation from isoteric and allosteric-kinetic data and binding measurements. Eur. J. Biochem. 26:368–379.

    Google Scholar 

  7. 7.

    Canela, E. 1984. A free derivative program for non-linear regression analysis of enzyme kinetics to be used on small computers. Int. J. Biomed. Computing 15:121–130.

    Google Scholar 

  8. 8.

    Warburg, O. andChristian, W. 1942. Isolation and characterization of enolase. Biochem. Z. 310:384–421. In accordance with a nomogram by Adams E. Cal. Corp. Biochem. Res.

  9. 9.

    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  10. 10.

    Fonoll, C., Canela, E. I. andBozal, J. 1982. Characterization of the forms of bovine liver adenosine deaminase. Int. J. Biochem. 14:679–683.

    Google Scholar 

  11. 11.

    Thampy, K. G., andBarnes, E. M. Jr. 1983. Adenosine transport by primary cultures of neurons from chick embryo brain. J. Neurochem. 40:874–879.

    Google Scholar 

  12. 12.

    Tomas, J., Marsal, J., Esquerda, J. E., andSolsona, C. 1982. Ionic dependence of adenosine uptake by isolated nerve endings from Torpedo electric organ. Neurochem. Int 4:513–521.

    Google Scholar 

  13. 13.

    Bender, A. S., Wu, P. H., andPhillis, J. W. 1980. The characterization of [3H] Adenosine uptake into rat cerebral cortical synaptosomes. J. Neurochem. 35:629–640.

    Google Scholar 

  14. 14.

    Franco, R., Canela, E. I., andBozal, J. 1981. Purine catabolism in rat brain. Rev. Esp. Fisiol. 37:255–262.

    Google Scholar 

  15. 15.

    Mallol, J., andBozal, J. 1982. Purification and characterization of bovine brain 5′-nucleotidase. J. Neurochem. 39:982–989.

    Google Scholar 

  16. 16.

    Mallol, J., andBozal, J. 1983. Modification of 5′-nucleotidase activity by divalent cations and nucleotides. J. Neurochem. 40:1205–1211.

    Google Scholar 

  17. 17.

    Burger, R. M., andLowenstein, J. M. 1975. 5′-nucleotidase from smooth muscle of small intestine and from brain. Inhibition by nucleotides. Biochemistry 14:2362–2366.

    Google Scholar 

  18. 18.

    Pull, I., andMcIlwain, H. 1974. Rat cerebral-cortex adenosine deaminase activity and its subcellular distribution. Biochem. J. 144:37–41.

    Google Scholar 

  19. 19.

    Van der Weyden, M. R., andKelley, W. N. 1976. Human adenosine deaminase. Distribution and properties. J. Biol. Chem. 251:5448–5456.

    Google Scholar 

  20. 20.

    Stanley, K. K., Edwards, M. R., andLuzio, J. P. 1980. Subcellular distribution and movement of 5′-nucleotidase in rat cells. Biochem. J. 186:59–69.

    Google Scholar 

  21. 21.

    Widnell, C. C. 1982. Evidence for a continual exchange of 5′-nucleotidase between the cell surface and cytoplasmic membranes in cultured rat fibroblasts. Cell 28:61–70.

    Google Scholar 

  22. 22.

    Zachowski, A., Howard Evans, W., andParaf, A. 1981. Immunological evidence that plasma-membrane 5′-nucleotidase is a transmembrane protein. Biochim. Biophys. Acta 644:121–126.

    Google Scholar 

  23. 23.

    Muller, M. H., Kraupp, M., andChiba, P. 1983. Enzymological aspects of disorders in purine metabolism. Clin. Biochem. 16:31–37.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge Bozal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Centelles, J.J., Franco, R., Canela, E.I. et al. Kinetics of the 5′-nucleotidase and the adenosine deaminase in subcellular fractions of rat brain. Neurochem Res 11, 471–479 (1986). https://doi.org/10.1007/BF00965316

Download citation

Keywords

  • Adenosine
  • Kinetic Parameter
  • Purine
  • Nucleoside
  • Molecular Species