Skip to main content
Log in

Glutamate, GABA, and CNS disease: A review

  • An Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bachelard, H. S. 1981: Biochemistry of centrally active amino acids. Adv. Biochem. Psychopharmacol. 29:475.

    PubMed  Google Scholar 

  2. Cohen, S. R., andLajtha, J. 1972. Amino acid transport. Pages 543–572.in Lajtha, A. (ed.), Handbook of Neurochemistry, Plenum Press, New York.

    Google Scholar 

  3. Onkonkwo, P. O., andOrlowski, M., andGreen, J. P. 1974. Enzymes of the γ-glutamyl cycle in the choroid plexus and brain. J. Neurochem. 22:1053.

    PubMed  Google Scholar 

  4. Eldjarn, L., Jellum, E., andStokke, O. 1972. Pyroglutamic aciduria: Studies on the enzymic block and on the metabolic origin of pyroglutamic acid. Clin. Chimica Acta 40:461.

    Google Scholar 

  5. Oldendorf, W. J., andSzabo, J. 1976. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am. J. Physiol. 230:94.

    PubMed  Google Scholar 

  6. Pardridge, W. M., andOldendorf, W. H. 1977. Transport of metabolic substrates through the blood brain barrier. J. Neurochem. 28:5.

    PubMed  Google Scholar 

  7. Siesjo, B. K. 1978. Brain Energy Metabolism, Wiley, London.

    Google Scholar 

  8. Pardridge, W. M., 1979. Regulation of amino acid availability to brain: Selective control mechanisms for glutamate. Pages 125–135.in Filer L. J. (ed), Glutamic Acid: Advances in Biochemistry and Physiology, Raven Press, New York.

    Google Scholar 

  9. Shank, R. P., andAprison, M. H.. ibid. Biochemical Aspects of the Neurotransmitter Function of Glutamate. Ibid., pp. 139–150.

    Google Scholar 

  10. Bradford, H. F., Ward, H. R., andThomas, A. J. 1978. Glutamine-a major substrate for nerve endings. J. Neurochem. 30:1453–1459.

    PubMed  Google Scholar 

  11. Shank, R. P., andAprison, M. H. 1977. Glutamine uptake and metabolism by the isolated toad brain: evidence pertaining to its proposed role as a transmitter precursor. J. Neurochem. 28:1189.

    PubMed  Google Scholar 

  12. Bradford, H. F., andWard, H. R. 1976. On glutaminase activity in mammalian synaptosomes. Brain Res. 110:115.

    PubMed  Google Scholar 

  13. Seiler, N., Bink, G., andGrove, J. 1979. Regulatory interrelations between GABA and polyamines. I. Brain GABA levels and polyamine metabolism. Neurochem. Res. 4:425.

    Google Scholar 

  14. Hamberger, A., Chiang, G., Nylen, E. S., Scheff, S. W., andCotman, C. W. 1979. Glutamate as a CNS transmitter: evaluation of glucose and glutamine as precursor for the synthesis of preferentially released glutamate. Brain Res. 168:513.

    PubMed  Google Scholar 

  15. Benjamin, A. M., andQuastel, J. M. 1972. Locations of amino acids in brain slices from the rat. Biochem. J. 128:631.

    PubMed  Google Scholar 

  16. Martinez-Hernandez, A., Bell, K. P., andNorenberg, M. D. 1977. Glutamine synthetase: glial localization in brain. Science 195:1356.

    PubMed  Google Scholar 

  17. McGeer, E. G., andMcGeer, P. L. 1979. Localization of glutaminase in the rat neostriatum. J. Neurochem. 32:1071.

    PubMed  Google Scholar 

  18. Walker, J. E., andFonnum, F. (In preparation). Enrichment of glutaminase activity in a population of cholinergic nerve terminals.

  19. Wong, P. T. H., McGeer, E. G., andMcGeer, P. L. 1981. A sensitive radiometric assay for ornithine transaminase: regional and subcellular distributions in rat brain. J. Neurochem. 36:510.

    Google Scholar 

  20. Seiler, N., andDeckart, K. 1976. Association of putrescine, spermidine, spermine, and GABA with structural elements of brain cells. Neurochem. Res. 1:469.

    Google Scholar 

  21. Baxter, C. F. 1970. The nature of γ-aminobutyric acid. Pages 289–335,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 111, Plenum Press, New York.

    Google Scholar 

  22. van den Berg, C. J.. Ibid. Glutamate and Glutamine. Ibid. pp. 355–372.

  23. Fonnum, F., Soreide, A., Kvale, I., Walker, J. andWalaas, I. 1981. Glutamate in cortical fibers. Adv. Biochem. Psychopharmacol. 27:29.

    PubMed  Google Scholar 

  24. Schousboe, A., andHertz, L. 1981. Role of astroglial cells in glutamate homeostasis. Adv. Biochem. Psychopharmacol. 27:103.

    PubMed  Google Scholar 

  25. Barber, R., andSaito, K. 1976. Light microscopic visualization in GAD and GABA-T in immunocytochemical preparations of rodent CNS. Pages 113–132,in Roberts, E., Chase, T. M., andTower, B. D. (eds.), GABA in Nervous System Function, Raven Press, New York.

    Google Scholar 

  26. Ribak, C. E., Vaughn, J. E., andRoberts, E. 1979. The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry. J. Comp. Neurol. 187:261.

    PubMed  Google Scholar 

  27. Walaas, I., andFonnum, F. 1979. The distribution and origin of glutamate decar-boxylase and choline acetyltransferase in central pallidum and other basal forebrain regions. Brain Res. 177:325.

    PubMed  Google Scholar 

  28. Meyer, D. K., Oertel, W. H., andBrownstein, M. J. 1980. Deafferentation studies on the glutamic acid decarboxylase content of the supraoptic nucleus of the rat. Brain Res. 200:165.

    PubMed  Google Scholar 

  29. Fonnum, F., Gottesfeld, Z., andGrofova, I. 1978. Distribution of glutamate decarboxylase, choline acetyltransferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal striatoentopeduncular, and striatnigral gabaergic fibers. Brain Res. 143:125.

    PubMed  Google Scholar 

  30. Fonnum, F., Grofova, I., andRinvik, E. 1978. Origin and distribution of glutamate decarboxylase in the nucleus subthalamicus of the cat. Brain Res. 153:370.

    PubMed  Google Scholar 

  31. Fonnum, F., andWalberg, F. 1973. An estimation of concentration of GABA and GAD in the inhibitory Purkinje axon terminals in the cat. Brain Res. 54:115.

    PubMed  Google Scholar 

  32. Storm-Mathisen, J. 1972. Glutamate decarboxylase in the rat hippocampal region after lesions of the afferent fiber systems Brain Res. 40:215.

    PubMed  Google Scholar 

  33. McGeer, P. L., andMcGeer, E. G. 1975. Evidence for glutamic acid decarboxylase containing interneurons in the neostriatum. Brain Res. 91:331.

    PubMed  Google Scholar 

  34. Mujata, Y., andOtsuka, M. 1972. Distribution of GABA in cat spinal cord and the alteration produced by local ischemia. J. Neurochem. 19:1833.

    PubMed  Google Scholar 

  35. Kelly, J. S., Gottesfeld, Z., andSchon, F. 1973. Reduction in GAD 1 activity from the dorsal lateral region of the deafferented rat spinal cord. Brain Res. 62:581.

    PubMed  Google Scholar 

  36. Curtis, D. R., andJohnston, G. A. R. 1974. Amino acid transmitters in the mammalian central nervous system. Ergebn. Phsiol. 69:97.

    Google Scholar 

  37. Krnjevic, K. 1974. Chemical nature of synaptictransmission in vertebrates. Physiol. Rev. 54:418.

    Google Scholar 

  38. Watkins, J. C. 1981. Pharmacology of excitatory amino acid transmitter. Adv. Biochem. Psychopharmacol. 29:205.

    PubMed  Google Scholar 

  39. Davidoff, R. A. 1981. Amino acids and presynaptic inhibition. Adv. Biochem. Psychopharmacol. 29:249.

    PubMed  Google Scholar 

  40. Assaf, S. Y., Crunelli, V., andKelly, J. S. 1981. Depolarizing synaptic actions of GABA in the rat dentate gyrus. Adv. Biochem. Psychopharmacol. 29:239.

    PubMed  Google Scholar 

  41. Watkins, J. C. 1981. Excitatory amino acid transmitters. Ann. Rev. Pharmacol. 21:165.

    Google Scholar 

  42. Cox, D. W. G., Bradford, H. F. 1978. Uptake and release of excitatory amino acid transmitters. Pages 71–95,in McGeer, E. G., Olney, J. W., andMcGeer, P. L. (eds.), Kainic Acid as a Tool in Neurobiology, Raven Press, New York.

    Google Scholar 

  43. Hertz, L. 1979. Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13:277.

    PubMed  Google Scholar 

  44. Watkins, J. C. 1978. Excitatory amino acids. Pages 37–69,in McGeer, E. G., Olney, J. W., andMcGeer, P. L. (eds.), Kainic Acid as a Tool in Neurobiology, Raven Press, New York.

    Google Scholar 

  45. Sellstrom, A., andHamberger, A. 1975. Neuronal and glial systems for GABA transport. J. Neurochem. 24:847.

    PubMed  Google Scholar 

  46. Schousboe, A. 1981. Transport and metabolism of glutamate and GABA in neurons and glial cells. Int. Rev. Neurobiol. 22:1.

    PubMed  Google Scholar 

  47. Kanner, B. I. 1978. Active transport of GABA by membrane vesicles isolated from rat brain. Biochemistry 17:1207.

    PubMed  Google Scholar 

  48. Kanner, B. I., andSharon, I. 1978. Active transport ofl-glutamate by membrane vesicles isolated from rat brain. Biochemistry 17:2949.

    Google Scholar 

  49. Peck, E. J. 1980. Receptors for amino acids. Ann. Rev. Physiol. 42:615.

    Google Scholar 

  50. Greenlee, D. V., Van Ness, P. C., Olsen, R. W. 1978. GABA binding in mammalian brain: receptor-like specificity of sodium-independent sites. J. Neurochem. 31:933.

    PubMed  Google Scholar 

  51. Toffano, G., Leon, A., Masotti, M., Guidotti, A., andCosta, E. 1980. GABA-modulin: a regulatory protein for GABA receptors. Pages 133–142,in Pepeu, G., Kuhar, M. J., andEnna, S. J. (eds.), Receptors for Neurotransmitters and Peptide Hormones, Raven Press, New York.

    Google Scholar 

  52. Torrano, G., Guidotti, A., andCosta, E. 1978. Purification of an endogenous protein inhibitor of the high-affinity binding of GABA to synaptic membranes of rat brain. PNAS 75:4024.

    PubMed  Google Scholar 

  53. Olsen, R. W. 1981. GABA-benzodiazepine-barbiturate receptor interactions. J. Neurochem. 37:1.

    PubMed  Google Scholar 

  54. Roberts, P. J. 1981. Receptors for excitatory amino acids: binding studies and stimulation of cyclic GMP levels. Adv. Biochem. Psychopharmacol. 29:379.

    PubMed  Google Scholar 

  55. Michaelis, E. K., Michaelis, M. L., Chang, H. H., Belieu, R. M., andGrubbs, R. D. 1981. Biochemical-molecular characteristics of the brain synaptic membrane glutamate receptor. Adv. Biochem. Psychopharmacol. 29:387.

    PubMed  Google Scholar 

  56. Baudry, M., andLynch, G. 1981. High affinity binding sites for [3H]glutamate in hippocampal membranes: the search for a glutamate receptor. Adv. Biochem. Psychopharmacol. 29:397.

    PubMed  Google Scholar 

  57. McBean, G. J., andRoberts, G. 1981. Glutamate-preferring receptors regulate the release of D-3H-aspartate from rat hippocampal slices. Nature 291:593.

    PubMed  Google Scholar 

  58. Moroni, F., Corradetti, R., Casamenti, F., Moneti, G., andPepeu, G. 1981. The release of GABA and glutamate from the cerebral cortex is an index of the activity of underlying aminoacidergic neurons. Adv. Biochem. Psychopharmacol. 27:157.

    PubMed  Google Scholar 

  59. Guachy, C., Kemel, M. L., Glowinski, J., andBesson, M. J. 1981. In vivo release of newly synthesized GABA in the basal ganglia of the cat. Adv. Biochem. Psychopharmacol. 29:183.

    PubMed  Google Scholar 

  60. van der Heyden, J. A. M., Venema, K., Lebrun, P., Sebens, J. B., andKorf, J. 1981. Release of endogenous GABA from the rat brain: methodological aspects and the effects of catecholamines. Adv. Biochem. Psychopharmacol. 29:193.

    PubMed  Google Scholar 

  61. Collins, G. G. S. 1981. Effects of pentobarbitone on the synaptically evoked release of the amino acid neurotransmitter candidates aspartate and GABA from rat olfactory cortex. Adv. Biochem. Psychopharmacol. 27:147.

    PubMed  Google Scholar 

  62. Potashner, S. J., andLake, N. 1981. Action of baclofen and pentobarbital on amino acid release. Adv. Biochem. Psychopharmacol. 27:139.

    PubMed  Google Scholar 

  63. Metcalf, B. W. 1979. Inhibitors of GABA metabolism. Biochem. Pharmacol. 28:1705.

    Google Scholar 

  64. Loscher, W. 1981. Effect of inhibitors of GABA aminotransferase on the metabolism of GABA in brain tissue and synaptosomal fractions. J. Neurochem. 36:1521.

    PubMed  Google Scholar 

  65. Perry, T. L., andHansen, S. 1978. Biochemical effects in man and rat of three drugs which can increase brain GABA content. J. Neurochem. 30:679.

    PubMed  Google Scholar 

  66. Wood, J. D., Russell, M. P., andKurylo, E. 1980. The GABA content of nerve endings (synaptosomes) in mice after the intramuscular injection of GABA-elevating agents: a possible role in anticonvulsant activity. J. Neurochem. 35:125.

    PubMed  Google Scholar 

  67. Hotujac, L., Muftic, R. H., andFilipovic, N. 1976. Verruculogen: a new substance for decreasing of GABA levels in CNS. Pharmacology 14:297.

    PubMed  Google Scholar 

  68. Michaelis, E. K., Michaelis, M. L., Belieu, R. M., Grubbs, R. D., andMagruder, C. 1980. Effects of in vitro ethanol addition on brain synaptic membrane binding. Brain Res. Bull. 5 (Suppl. 2):647.

    Google Scholar 

  69. Freed, W. J., andMichaelis, E. K. 1977. Glutamic acid and ethanol dependence. Pharmac. Biochem. Behav. 8:509.

    Google Scholar 

  70. Michaelis, E. K., Michaelis, M. L., andFreed, W. J. 1980. Chronic ethanol intake and synaptosomal glutamate binding activity. Pages 43–56,in Bedleiter, H. (ed.), Plenum Press. New York.

    Google Scholar 

  71. Ticku, M. K., andBurch, T. 1980. Alterations in GABA receptor sensitivity following acute and chronic ethanol treatments. J. Neurochem. 34:417.

    PubMed  Google Scholar 

  72. Leitch, G. J., Backer, D. J., Siegman, F. S., andGuthrie, G. D. 1977. Possible role of GABA in the development of tolerance to alcohol. Experientia 33:496.

    PubMed  Google Scholar 

  73. Bisaas, B., andCarlsson, A. 1978. Effect of intraperitoneally administered GABA on the locomotor activity in mice. Psychopharmacology 59:91.

    PubMed  Google Scholar 

  74. Mohler, H., Okada, T., andEnna, S. J. 1978. Benzodiazepine and neurotransmitter receptor binding in rat brain after chronic administration of diazepam or phenobarbital. Brain Res. 156:391.

    PubMed  Google Scholar 

  75. Supavilai, P., andKarobath, M. 1980. Ethanol and other CNS depressants decrease GABA synthesis in mouse cerebral cortex and cerebellum in vivo. Life Sci. 27:1035.

    PubMed  Google Scholar 

  76. Silbergeld, E. K., Kruska, R. E., Miller, L. P., andEng, N. 1980. Effects of lead in vivo and in vitro on GABAergic neurochemistry. J. Neurochem. 34:1712.

    PubMed  Google Scholar 

  77. Straughan, D. W. 1978. Drug action and the GABA system. Trends in Neurological Science, pp. 97–100.

  78. Lodge, D., Johnston, G. A. R., Curtis, D. R., andBrand, S. J. 1977. Effects of theAreca nut constituents arecaidine and guvacine on the action of GABA in the cat central nervous system. Brain Res. 136:513.

    PubMed  Google Scholar 

  79. Cutler, R. W. P., andDudzinski, D. S. 1974. Effect of pentobarbital on uptake and release of3H-GABA and14C-glutamate by brain slices. Brain Res. 67:546.

    PubMed  Google Scholar 

  80. Harris, M., Hopkin, J. M., andNeal, M. J. 1973. Effect of centrally acting drugs on the uptake of GABA by slices of rat cerebral cortex. Brit. J. Pharmacol. 47:229.

    Google Scholar 

  81. Meldrum, B. S. 1978. GABA and the search for new anticonvulsant drugs. Lancet 2:304.

    PubMed  Google Scholar 

  82. Frey, H. H., Popp, C., andLoscher, W. 1979. Influence of high affinity GABA uptake on seizure thresholds in mice. Neuropharmacology 18:581.

    PubMed  Google Scholar 

  83. Potashner, S. J. 1979. Baclofen: effects on amino acid release and metabolism in slices of guinea pig cerebral cortex. J. Neurochem. 32:103.

    PubMed  Google Scholar 

  84. Johnston, G. A. R., Hailstone, M. H., andFreeman, C. G. 1980. Baclofen: stereoselective inhibition of excitant amino acid release. J. Pharm. Pharmacol. 32:230.

    PubMed  Google Scholar 

  85. Meldrum, B. S. 1975. Epilepsy and GABA-mediated inhibition. Internat. Rev. Neurobiol. 17:1.

    Google Scholar 

  86. Coursin, D. B. 1954. Convulsive seizures in infants with pyridoxine deficient diet. J.A.M.A. 154:406.

    Google Scholar 

  87. Wood, J. D., Radomski, M. W., andWatson, W. J. 1981. A study of possible biochemical mechanisms involved in hyperbaric oxygen induced changes in cerebral GABA levels and accompanying seizures. Can. J. Biochem. 49:543.

    Google Scholar 

  88. Alderman, J. L., Culver, B. W., andShellenberger, M. K. 1974. An examination of the role of GABA in hyperbaric oxygen-induced convulsions in the rat. I. Effects of increased GABA and protective agents. J. Pharmacol. Exp. Therap. 190:334.

    Google Scholar 

  89. Schwartzkroin, P. A., andPrince, D. A. 1980. Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity. Brain Res. 183:61.

    PubMed  Google Scholar 

  90. Hotson, J. R., andPrince, D. A. 1981. Penicillin and barium-induced epileptiform bursting in hippocampal neurons: actions on Ca++ and K+ potentials. Ann. Neurol. 10:11.

    PubMed  Google Scholar 

  91. Emson, P. C., andJoseph, M. H. 1975. Neurochemical and morphological changes during the development of cobalt-induced epilepsy in the rat. Brain REs. 93:91.

    PubMed  Google Scholar 

  92. Ribak, C. E., Harris, A. B., Vaughn, J. E., andRoberts, E. 1979. Inhibitory GABAergic nerve terminals decrease at sites of focal epilepsy. Science 205:211.

    PubMed  Google Scholar 

  93. Bakay, R. A. E., andHarris, A. B. 1981. Neurotransmitter, receptor, and biochemical changes in monkey cortical foci. Brain Res. 206:387.

    PubMed  Google Scholar 

  94. Chauval, P., Louvel, J., andPumain, R. 1978. Alteration of cortical neuron sensitivity to excitatory amino acids in a chronic epileptogenic focus. Pages 281–383,in Ryall, R. W., andKelly, J. S. (eds.), Iontophoresis and Transmitter Mechanism in the mammalian Central Nervous System, Elsevier, Amsterdam.

    Google Scholar 

  95. Ross, S. M., andCraig, C. R. 1981. Studies on GABA transport in cobalt experimental epilepsy in the rat. J. Neurochem. 36:1006.

    PubMed  Google Scholar 

  96. Emson, P. C. 1976. Effects of chronic treatment with aminooxyacetic acid or sodium-n-dipropylacetate on brain GABA levels and the development and regression of cobalt epileptic foci in rats. J. Neurochem. 27:1489.

    PubMed  Google Scholar 

  97. Sloper, J. J., Johnson, P., andPowell, T. P. S. 1980. Selective degeneration of interneurons in the motor cortex of infant monkeys following controlled hypoxia: a possible cause of epilepsy. Brain Res. 198:204.

    PubMed  Google Scholar 

  98. van Gelder, N. M., Sherwin, A. L., andRasmussen, R. 1972. Amino acid content of epileptogenic human brain: focal vs surrounding regions. Brain Res. 40:385.

    PubMed  Google Scholar 

  99. Daly, D. D., Daly, D. M., andDrane, J. W., Pippenger, C., Porter, J. C., andWada, J. A. 1981. GABAergic disinhibiton and reversible secondary epileptogenesis in man. Pages 219–234,in Wada, J. (ed.), Kindling 2, Raven Press, New York.

    Google Scholar 

  100. Henneche, H., andWiechert, P. 1970. Seizures and the dose ofl-glutamic acid in rats. Epilepsia 11:327.

    PubMed  Google Scholar 

  101. Knaape, H. H., andWiechert, P. 1970. Seizures after intracerebral injection ofl-glutamate. J. Neurochem. 17:1171.

    PubMed  Google Scholar 

  102. Sabato, V. C., Fiszer de Plazas, S., andde Robertis, E. 1979. The convulsant drugs 3-mercaptopropionate and methionine sulfoximine inhibitl-glutamate andl-aspartate binding to a hydrophobic protein fraction from rat cerebral cortex. Neurochem. Res. 4:713.

    PubMed  Google Scholar 

  103. Brown, D. J., andStone, W. E. 1973. Glutamate and aspartate in cortical subarachnoid fluid in relation to convulsive activity. Brain Res. 54:143.

    PubMed  Google Scholar 

  104. Stone, W. E., andJarid, M. J. 1980. Effects of anticonvulsants and glutamate antagonists on the convulsive action of kainic acid. Arch. Int. Pharmacodyn. 243:56.

    PubMed  Google Scholar 

  105. Bein, H. J. 1972. Studies of baclofen in animal seizure models. Pages 76–89,in Birkmeyer, W. (ed.), Spasticity, A Topical Survey. Hober, Bern.

    Google Scholar 

  106. Nadler, J. V. 1981. Kainic acid model of epileptic brain damage. Neurosci. Res. Prog. Bull. 19:391.

    Google Scholar 

  107. Zazcek, R., Nelson, M. F., andCoyle, J. T. 1978. Effects of anesthetics and anticonvulsants on the action of kainic acid in the rat hippocampus. Eur. J. Pharmacol. 52:323.

    PubMed  Google Scholar 

  108. Ben-Ari, Y., Tremblay, E., Otterson, O. P., andMeldrum, B. S. 1980. The role of epileptic activity in hippocampal and ‘remote’ cerebral lesions induced by kainic acid. Brain Res. 191:79.

    PubMed  Google Scholar 

  109. Nadler, J. V. 1981. Role of excitatory pathways in the hippocampal damage produced by kainic acid. Adv. Biochem. Psychopharmacol. 27:395.

    PubMed  Google Scholar 

  110. Pisa, M., Sanberg, P. R., Corcoran, M. E., andFibiger, H. C. 1980. Spontaneously recurrent seizures after intercerebral injections of kainic acid in rat: a possible model of human temporal lobe epilepsy. Brain Res. 200:481.

    PubMed  Google Scholar 

  111. McGeer, E. G., Jakubovic, A., andSingh, E. A. 1980. Ethanol, baclofen, and kainic acid neurotoxicity. Exp. Neurol. 69:359.

    PubMed  Google Scholar 

  112. McGeer, E. G., andMcGeer, P. L. 1978. Some factors influencing the neurotoxicity of intrastriatal injections of kainic acid. Neurochem. Res. 3:501.

    PubMed  Google Scholar 

  113. Schwarcz, R., andKohler, C. 1980. Evidence against an exclusive role of glutamate in kainic acid neurotoxicity. Neurosci. Lett. 19:243.

    PubMed  Google Scholar 

  114. Cox, D. W. G., andBradford, H. F. 1978, Uptake and release of excitatory amino acid neurotransmitters. Pages 71–93,in McGeer, E. G., Olney, J. W., andMcGeer, P. L. (eds.), Kainic Acid as a Tool in Neurobiology, Raven Press, New York.

    Google Scholar 

  115. Lloyd, K. G., et al. 1981. Neurochemistry of GABA synapses in surgically resected cerebral cortex from epileptic patients. Pages 199–206,in Costa, E. (ed.), GABA and Benzodiazepine Receptors. Raven Press, New York.

    Google Scholar 

  116. Olney, J. W., Fuller, T. A., andde Gubareff, T. 1981. Kainate-like neurotoxicity of folates. Nature 292:165.

    PubMed  Google Scholar 

  117. Ruck, A., Kramer, S., Metz, J., andBrennan, M. J. W. 1980. Methyltetrahydrofolate is a potent and selective agonist for kainic acid receptors. Nature 287:852.

    PubMed  Google Scholar 

  118. Coyle, J. T. 1981. Huntington's disease. Neurosci. Res. Prog. Bull. 19:289.

    Google Scholar 

  119. Hruska, R. E., andSilbergeld, E. K. 1979. Abnormal locomotion in rats after bilateral intrastriatal injection of kainic acid. Life Sci. 25:181.

    PubMed  Google Scholar 

  120. Divac, I., Markowtisch, H. J., andPritzel, M. 1978. Behavioral and anatomical consequences of small intrastriatal injections of kainic acid in the rat. Brain Res. 151:523.

    PubMed  Google Scholar 

  121. Mason, S. T., andFibiger, H. C. 1979. Kainic acid lesions of the striatum in rats mimic the spontaneous motor abnormalities of Huntington's disease. Neuropharmacology 18:403.

    PubMed  Google Scholar 

  122. Sanberg, P. R., andFibiger, H. C. 1979. Body weight, feeding, and drinking behaviors in rats with kainic acid-induced lesions of striatal neurons-with a note on body weight symptomatology in Huntington's disease. Exp. Neurol. 66:444.

    PubMed  Google Scholar 

  123. Schwarcz, R., Bennett, J. P., andCoyle, J. T. 1977. Inhibitors of GABA metabolism: implications for Huntington's disease. Ann. Neurol. 2:299.

    PubMed  Google Scholar 

  124. Manyam, B. V., Katz, L., Hare, T. A., Kaniefski, K., andTremblay, R. D. 1980. Isoniazid-induced elevation of CSF GABA levels and effects on chorea in Huntington's disease. Ann. Neurol. 10:35.

    Google Scholar 

  125. Tell, G., Bohlen, P., Schechter, P. J., Koch-Weser, J., Agid, Y., Bonnet, A. M., Coquillat, G., Chazot, G., andFischer, C. 1981. Treatment of Huntington disease with γ-acetylenic GABA, an irreversible inhibitor of GABA-transaminase: increased CSF GABA and homocarnosine without clinical amelioration. Neurology 31:207.

    PubMed  Google Scholar 

  126. Palfreyman, M. G., Schechter, P. J., Buckett, W. R., Tell, G. D., andKoch-Weser, J. 1981. The pharmacology of GABA-transaminase inhibitors. Biochem. Pharmacol. 30:817.

    PubMed  Google Scholar 

  127. McCarthy, B. W., Gomes, V. R., Neethling, A. C., Shanley, B. C., Taljaard, J. J. F., Potgieter, L., andRoux, J. T. 1981. GABA concentration in cerebrospinal fluid in schizophrenia. J. Neurochem. 36:1406.

    PubMed  Google Scholar 

  128. Gold, B. I., Bowers, M. B., Roth, R. H., andSweeney, D. W. 1979. GABA levels in CSF of patients with psychiatric disorders. Am. J. Psychiat. 137:3.

    Google Scholar 

  129. Perry, T. L., Kish, S. J., Buchanan, J., andHansen, S. 1979. GAMA-aminobutyric acid deficiency in brain of schizophrenic patients. Lancet 1:237.

    PubMed  Google Scholar 

  130. Cross, A. J., Crow, T. J., andOwen, F. 1979. GABA in the brain in schizophrenia. Lancet 1:560.

    Google Scholar 

  131. Bowers, M. B., Gold, B. I., andRoth, R. H. 1980. CSF GABA in psychotic disorders. Psychopharmacology 70:279.

    PubMed  Google Scholar 

  132. Burt, D. R., Creese, I., andSnyder, S. H. 1977. Antischizophrenic drugs: Chronic treatment elevates dopamine receptor binding in brain. Science 196:326.

    PubMed  Google Scholar 

  133. Tarsy, D., andBaldessarini, R. J. 1974. Behavioral supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacol. 13:927.

    Google Scholar 

  134. Enna, S. J., 1981. GABA receptor pharmacology. Biochem. Pharmacol. 30:907.

    PubMed  Google Scholar 

  135. Tamminga, C., Crayton, J., andChase, T. 1979. Improvement in tardive dyskinesia after muscimol. Arch. Gen. Psychiat. 36:595.

    PubMed  Google Scholar 

  136. Bartholini, G. 1976. Schizophrenia today. Pages 87–88,in Kemali, D., et al. (eds.), Pharmacologic approaches. Pergamon, Oxford.

    Google Scholar 

  137. Tamminga, C., Crayton, J., andChase, T. 1978. Muscimol: GABA agonist therapy in schizophrenia. Ann. J. Psychiat. 135:746.

    Google Scholar 

  138. Casey, D. E., Gerlach, J., Magelund, G., andChristensen, T. R. 1980. Gamma-acetylenic GABA in tardive dyskinesia. Adv. Biochem. Psychopharmacol. 24:577.

    PubMed  Google Scholar 

  139. Fischer, J. E. 1977. Animal models in hepatic coma. Pages 385–90,in Hanin, I., andUsdin, E. (eds.), Animal Models in Psychiatry and Neurology, Pergamon, Oxford.

    Google Scholar 

  140. Breen, K. J., and SCHENKER, S. 1972. Hepatic coma: present concepts of pathogenesis and therapy. Progr. in Liver Disease 4:301.

    Google Scholar 

  141. Cole, M., Rutherford, R. B., andSmith, F. O. 1972. Experimental ammonia encephalopathy in the primate. Arch. Neurol. 26:130.

    PubMed  Google Scholar 

  142. Aickin, C. C., Deisz, R. A., andLux, H. D. 1980. Does NH4 + affect postsynaptic inhibition via pH or cation effects. J. Physiol. 300:400.

    Google Scholar 

  143. Benjamin, A. M., Okamoto, K., andQuastel, J. H. 1978. Effects of ammonium ions on spontaneous action potentials and on contents of Na, K. NH4 and Cl ions in brain in vitro. J. Neurochem. 31:130.

    Google Scholar 

  144. Warren, K. S., andSchenker, S. 1964. Effect of an inhibitor of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism. J. Lab. Clin. Med. 64:442.

    PubMed  Google Scholar 

  145. Zieve, L., andNicoloff, D. M. 1975. Pathogenesis of hepatic coma. Ann. Rev. Med. 26:143.

    PubMed  Google Scholar 

  146. Bradford, H. F., andWard, H. K. 1975. Glutamine as a metabolic substrate for isolated nerve endings: inhibition by ammonium ions. Biochem. Soc. Trans. 3:1223.

    Google Scholar 

  147. Matheson, D. F., andvan den Berg, C. I. 1975. Ammonia and brain glutamine: inhibiton of glutamine degradation by ammonia. Biochem. Soc. Trans. 3:525.

    PubMed  Google Scholar 

  148. Hamberger, A., Jacobsson, I., Molin, S. O., Nystrom, B., andSandberg, M. 1981. Regulation of glutamate biosynthesis and release of pathophysiological levels of ammonium ions. Acv. Biochem. Psychopharmacol. 27:115.

    Google Scholar 

  149. Bradford, H. F., andWard, K. K. 1976. On glutaminase activity in mammalian synaptosomes. Brain Res. 110:115.

    PubMed  Google Scholar 

  150. Weiler, C. T., Nystrom, B., andHamberger, A. 1979. Glutaminase and glutamine synthetase activity in synaptosomes, bulk-isolated neurons and glia. Brain Res. 160:539.

    PubMed  Google Scholar 

  151. Well-Malherbe, H. 1972. Modulators of glutaminase activity. J. Neurochem. 19:2257.

    PubMed  Google Scholar 

  152. Constantinidis, J., andTissot, R. 1981. Role of glutamate and zinc in the hippocampal lesions of Pick's disease. Adv. Biochem. Psychopharmacol. 27:413.

    PubMed  Google Scholar 

  153. Burchfiel, J. L., andDuffy, F. H. 1981. Role of intracortical inhibition in deprivation amblyopia: reversal by microiontophoretic bicuculline. Brain Res. 206:479.

    PubMed  Google Scholar 

  154. Brennan, M. J. W., Cantrill, R. C., Warner, S. J., van der Westhuyzen, J., Fernandes-Costa, F., Kramer, S., andMetz, J. 1980. Amino acid transmitter transport in nerve endings from normal and vitamin B12 deficient fruit bats. Brain Res. 200:213.

    PubMed  Google Scholar 

  155. Kwok, R. H. M. 1968. Chinese restaurant syndrome. New ENg. J. Med. 278:796.

    Google Scholar 

  156. Schaumburg, H. M., Byck, R., Gersth, R., andMashenan, J. H. 1969. Monosodium glutamate: its pharmacology and role in the Chinese restaurant syndrome. Science 163:826.

    PubMed  Google Scholar 

  157. Kenney, R. A. 1979. Placebo-controlled studies of human susceptibility to oral monosodium glutamate. Pages 363–373, Glutamic Acid: Advances in Biochemistry and Pharmacology. New York, Raven Press.

    Google Scholar 

  158. Gore, M. E., andSalmon, P. R. 1980. Chinese restaurant syndrome: fact or fiction. Lancet 1:251.

    Google Scholar 

  159. Kenney, R. A. 1980. Chinese restaurant syndrome. Lancet 1:311.

    Google Scholar 

  160. Sauber, W. J. 1980. What is Chinese restaurant syndrome? Lancet 1:722.

    Google Scholar 

  161. Stone, T. W. 1981. Studies with excitatory amino acid antagonists in rat CNS: 2-amino, 5-phosphonovaleric acid, phenytoin, and benzodiazepines. Adv. Biochem. Psychopharmacol. 29:223.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, J.E. Glutamate, GABA, and CNS disease: A review. Neurochem Res 8, 521–550 (1983). https://doi.org/10.1007/BF00965107

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965107

Keywords

Navigation