Neurochemical Research

, Volume 8, Issue 4, pp 493–500 | Cite as

Mn2+-stimulatedATPase in rat brain

  • John D. Doherty
  • Norman SalemJr.
  • Carl J. Lauter
  • Eberhard G. Trams
Original Articles

Abstract

Divalent cation ATPases were prepared from rat brain synaptic vesicles, synaptosomal plasma membranes, and plasma membranes from the brain stem and sciatic nerve and tested for optimal stimulation by Mn2+, Mg2+, or Ca2+. ATPase in the synaptic vesicle subfraction was optimally stimulated by Mn2+. All plasma membrane preparations were optimally stimulated by Mg2+. Separate Mn2+ and Mg2+ ATPases could not be distinguished by either chemical inactivation or substrate preference criteria. Mn2+ stimulated ATPase in the micromolar range and it is suggested that Mn2+ interaction with ATPase may be of physiological and/or toxicological importance by being related to the cellular metabolism of this element.

Keywords

Plasma Membrane Sciatic Nerve Brain Stem Divalent Cation Synaptic Vesicle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonilla, E., Salazar, E., Villasmil, J. J., andVillalobos 1982. The regional distribution of manganese in the normal human brain. Neurochemical Research 7:221–227.PubMedGoogle Scholar
  2. 2.
    Chandra, S. V., andShukla, G. S. 1981. Concentration of striatal catecholamines in rats given manganese chloride through drinking water. J. Neurochem. 36:683–687.PubMedGoogle Scholar
  3. 3.
    Cotzias, G. C. 1958. Manganese in health and disease. Physiol. Rev. 38:503–532.PubMedGoogle Scholar
  4. 4.
    Cotzias, G. C., Papavasiliou, P. S., Ginos, J., Steck, A., andDuby, S. 1971. Metabolic modification of Parkinson's disease and of chronic manganese poisoning. Ann. Rev. Med. 22:305–326.PubMedGoogle Scholar
  5. 5.
    DeVries, G. H., Matthieu, J. M., Beny, M., Chicheportiche, R., Lazdunski, M., andDolivo, M. 1978. Isolation and partial characterization of rat CNS axolemma enriched fractions. Brain Res. 147:339–352.PubMedGoogle Scholar
  6. 6.
    Doherty, J. D., Salem, N., Jr., Lauter, C. J., andTrams, E. G. 1981. Mn2+ and Ca2+ ATPases in lobster axon plasma membranes and their inhibition by pesticides. Comp. Biochem. Physiol. 69C:185–190.Google Scholar
  7. 7.
    Donaldson, J., St Pierre, T., Minnich, J. L., andBarbeau, A. 1973. Determination of Na2+, K+, Mg2+, Cu2+, Zn2+, and Mn2+ in rat brain regions. Can. J. Biochem. 51:87–92.PubMedGoogle Scholar
  8. 8.
    Edstrom, A., Hanson, M., Prus, K., andWallin, M. 1980. Ca2+ or Mg2+-dependent enzyme ATP hydrolysis associated with microsomal fraction of frog sciatic nerve. J. Neurochem. 35:297–303.PubMedGoogle Scholar
  9. 9.
    Ehringer, H., andHornykiewcz, O. 1960. Verteilung von Noradrenalin und Dopamin (3-hydroxytyramin). Im Gehren des Menschen und ihr Verhalten bei Erkrankungen des Extrapyramidalin System. Klin Wschr. 38:1236–1239.PubMedGoogle Scholar
  10. 10.
    Fiske, C. H., andSubarrow, Y. 1925. The colormetric determination of phosphorous. J. Biol. Chem. 66:375–378.Google Scholar
  11. 11.
    Hanig, R., andAprison, M. H. 1967. Determination of calcium, copper, iron, magnesium, manganese, potassium, sodium, zinc, and chloride concentrations in several brain areas. Anal. Biochem. 21:169–177.PubMedGoogle Scholar
  12. 12.
    Ito, N., Kosita, M., andTanaka, R. 1982. Actomyosin-like ATPase extracted from plain synaptic vesicles fractions. Neurochem. International 4:247–258.Google Scholar
  13. 13.
    Javors, M. A., Bowden, C. L., andRoss, D. H. 1981. Kinetic characterization of Ca2+ transport in synaptic membranes. J. Neurochem. 37:381–387.PubMedGoogle Scholar
  14. 14.
    Jones, D. H., andMatus, A. I. 1974. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochem. Biophys. Acta 356:276–287.PubMedGoogle Scholar
  15. 15.
    Kadota, K., andKadota, T. 1973. Isolation of coated vesicles, plain synaptic vesicles, and flocculent material from a crude synaptosome fraction of guinea pig whole brain. J. of Cell Biol. 58:135–151.Google Scholar
  16. 16.
    Mena, I., Marin, O., Fuenzalida, S., andCotzias, G. C. 1967. Chronic manganese poisoning. Clinical picture and manganese turnover. Neurol. 17:128–36.Google Scholar
  17. 17.
    Michaelson, D. M., andOphir, E. 1980. Sidedness of (Calcium and Magnesium) adenosine triphosphatase of purified Torpedo synaptic vesicles. J. Neurochem. 34:1483–90.PubMedGoogle Scholar
  18. 18.
    Scheuhammer, A. M., andCherian, M. G. 1981. The influence of manganese on the distribution of essential trace elements. Toxicol. Appl. Pharmacol. 61:227–233.PubMedGoogle Scholar
  19. 19.
    Seth, P. K., Musain, R., Mushtag, M., andChandra, S. B. 1977. Effect of manganese on neonatal rat: Manganese concentration and enzymatic alterations in brain. Acta. pharmacol. et toxicol. 40:553–560.Google Scholar
  20. 20.
    Tanaka, R., Asaga, H., andTakeda, M. 1976. Nucleoside triphosphate and cation requirement for dopamine uptake by plain synaptic vesicles isolated from rat cerebrums. Brain. Res., 115:272–283.Google Scholar
  21. 21.
    Trams, E. G., andLauter, C. J. 1978. A comparative study of brain Ca2+ ATPases. Comp. Biochem. Physiol. 59B:191–194.Google Scholar
  22. 22.
    Tsudzuki, T. 1979. Mg2+-dependent adenosine triphosphatase in isolated synaptic vesicles. Attribution of most of the enzymic activity to an actomyosin-like protein. J. Biochem. (Tokyo) 85:567–574.Google Scholar
  23. 23.
    Weil-Malherbe, H., andGreen, R. H. 1951. The catalytic effect of molybate on the hydrolysis of organic phosphate bonds. Biochem. J. 49:286–292.Google Scholar
  24. 24.
    Williams, R. J. P. 1982. Free manganese (II) and iron (II) cations can act as intracellular cell controls. FEBS Letters 140:3–10.PubMedGoogle Scholar
  25. 25.
    Yamaguchi, I., Matsumura, F., andKodous, A. A. 1979. Inhibition of synaptic ATPase by Heptachlorepoxide in rat brain. Pestic Biochem. Physicol. 11:285–293.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • John D. Doherty
    • 1
  • Norman SalemJr.
    • 2
  • Carl J. Lauter
    • 2
  • Eberhard G. Trams
    • 2
  1. 1.Toxicology Branch Hazard Evaluation Division (TS-769) Office of Pesticide ProgramsEnvironmental Protection AgencyWashington, DC
  2. 2.Developmental and Metabolic Neurology BranchNational Institute of Neurological and Communicative Disorders and Stroke National Institutes of HealthBethesda

Personalised recommendations