Neurochemical Research

, Volume 7, Issue 12, pp 1465–1475 | Cite as

Degradation of cytoskeletal proteins in experimental spinal cord injury

  • Naren L. Banik
  • Edward L. Hogan
  • James M. Powers
  • Lily J. Whetstine
Original Articles

Abstract

Spinal cord injury was produced in rats by dropping a 10 g weight from 30 cm upon dura-invested exposed spinal cord. Examination of the fine structure of the traumatic lesion (15 min to 30 min) revealed granular degeneration of axons and occasional loosening of myelin lamellae. Older lesions (4 to 72 hours) showed degeneration of axons and vesiculation of myelin. At 15 minutes there is more loss of neurofilament proteins than of myelin proteins. Substantial decreases in the neurofilament and myelin proteins were observed at 30 minutes and the losses were even greater 2–72 hours after injury. This indicates that degeneration of axons may precede degradation of the myelin sheath and also that increased proteinase(s) activity, possibly activated by calcium, mediates the traumatic axonolysis and myelinolysis in experimental spinal cord trauma.

Keywords

Calcium Spinal Cord Spinal Cord Injury Fine Structure Substantial Decrease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balentine, J. D. 1980. Pathology of experimental spinal cord trauma. Lab Invest. 39:236–253.Google Scholar
  2. 2.
    Ducker, T. B., Kindt, G. W., andKempe, L. G. 1971. Pathological findings in acute experimental spinal cord trauma. J. Neurosurg. 35:700–708.Google Scholar
  3. 3.
    Wagner, F. C., Jr., Dohrmann, G. J., andBucy, P. C. 1971. Histopathology of transitory traumatic paraplegia in the monkey. J. Neurosurg. 35:272–276.Google Scholar
  4. 4.
    Nelson, E., Gertz, D., Rennels, M., Ducker, T. B., andBlaumanis, O. R. 1977. Spinal cord Injury. The role of vascular damage in the pathogenesis of central hemorrhagic necrosis. Arch. Neurol. 34:332–333.Google Scholar
  5. 5.
    Yashon, D., Bingham, W. C., Jr. Freeman, S. S., andFaddoul, E. M. 1975. Intracellular enzyme liberation in primate spinal cord injury. Surg. Neurol. 4:43–51.Google Scholar
  6. 6.
    Yeo, J. D., Stabback, S., andMcKenzie, B. 1977. Central necrosis following contusion to the sheep's spinal cord. Paraplegia 14:276–285.Google Scholar
  7. 7.
    Horrocks, L. A., Towes, A., Yashon, D., andLocke, G. E. 1973. Changes in myelin following trauma of the spinal cord in monkeys. Neurobiol. 3:256–263.Google Scholar
  8. 8.
    Banik, N. L., Powers, J. M., andHogan, E. L. 1980. The effects of spinal cord trauma on myelin. J. Neuropath. Exp. Neurol. 1980. 39:232–244.Google Scholar
  9. 9.
    Happel, R. D., Smith, K. P., Banik, N. L., Powers, J. M., Hogan, E. L. andBalentine, J. D. 1981. Ca++− accumulation in experimental spinal cord trauma. Brain Res. 211:476–479.Google Scholar
  10. 10.
    Banik, N. L., Powers, J. M., andHogan, E. L. 1979. Proteolytic enzymes in spinal cord trauma. Trans. Int. Soc. Neurochem. Jerusalem. 206.Google Scholar
  11. 11.
    Pant, H. C., andGainer, H. 1979. A calcium activated protease in squid axoplasm. J. Neurochem. 32(1):99–102.Google Scholar
  12. 12.
    Schlaepfer, W. W., andFreeman, L. A. 1980. Calcium dependent degradation of mammalian neurofilaments by soluble tissue factors from rat spinal cord. Neuroscience. 5:2305–2314.Google Scholar
  13. 13.
    Davison, P. F., andHong, B. S. 1977. Structural homologies in mammalian neurofilament proteins. Brain Res. 134:287–295.Google Scholar
  14. 14.
    Lasek, R. J., andHoffman, P. N. The neuronal cytoskeleton, axonal transport and axonal growth.in Goldman R., Pollard T, andRosenblum J, (eds.) Cell Motility. New York: Cold Spring Harbor Laboratory, 3:1021–1049.Google Scholar
  15. 15.
    Chiu, F. C., Norton, W. T., andFields, K. L. 1981. The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein and fibroblast type filament protein, vimentin. J. Neurochem. 37:147–155.Google Scholar
  16. 16.
    Brown, B. A., Nixon, R. A., Strocchi, P., andMarotta, C. A. 1981. Characterization and composition of neurofilament proteins from rat and mouse CNS. J. Neurochem. 36:143–153.Google Scholar
  17. 17.
    Banik, N. L., Hogan, E. L., Powers, J. M. andWhetstine, L. J. 1982. Degradation of neurofilament proteins in spinal cord injury. Trans. Am. Soc. Neurochem. 13:206.Google Scholar
  18. 18.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  19. 19.
    Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 227:680–685.Google Scholar
  20. 20.
    Shelanski, M. L., Albert, S., DeVries, G. H., andNorton, W. T. 1971. Isolation of filaments from brain. Science. 174:1242–1245.Google Scholar
  21. 21.
    Schlaepfer W. W., andHasler, M. B. 1979. Characterization of the calcium-induced disruption of neurofilaments in rat peripheral nerve. Brain Res. 168:299–309.Google Scholar
  22. 22.
    Banik, N. L., Hogan, E. L., Whetstine, L. J., andBalentine, J. D. 1981. Degradation of proteins in CaCl2-induced myelopathy in rat spinal cord. Neurosci. Abst. Los Angeles 7:292.Google Scholar
  23. 23.
    Balentine, J. D., andSpector, M. 1977. Calcifications of axons in experimental spinal cord trauma. Ann. Neurol. 2:520–523.Google Scholar
  24. 24.
    Balentine, J. D., andHilton, C. W. 1980. Ultrastructural pathology of axons and myelin in calcium induced myelopathy. J. Neuropath. Exp. Neurol. 39:339.Google Scholar
  25. 25.
    Goldman, J. E., Schaumburg, H. H., andNorton, W. T. 1978. Isolation and characterization of glial filaments from human brain. J. Cell. Biol. 78:426–440.Google Scholar
  26. 26.
    Eng, L. F., andBigbee, J. 1978. Immunohistochemistry of nervous system-specific antigens.in Agranoff, B. W., andAprison M. H. (eds.) Advances in Neurochemistry. New York: Plenum Press, 3:43–98.Google Scholar
  27. 27.
    Schlaeper, W. W., andMicko, S. 1978. Chemical and structural changes of neurofilaments in transected rat sciatic nerves. J. Cell. Biol. 78:369–378.Google Scholar
  28. 28.
    Dahl, D., Crosby, C. J. andBignami, A. 1981. Filament proteins in rat optic nerves undergoing Wallerian degeneration. Exp. Neurol. 71:421–430.Google Scholar
  29. 29.
    Soifer, D., Iqbal, K., Czosnek, H., De Mantini, J., Sturman, J. A., andWisniewski, H. 1981. The loss of neuron-specific proteins during the course of Wallerian degeneration of optic and sciatic nerve. J. Neurosci. 1:461–470.Google Scholar
  30. 30.
    Schlaepfer, W. W., andZimmerman, U. P. 1981. Calcium mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord. Neurochem. Res. 6:243–255.Google Scholar
  31. 31.
    Hogan, E. L., Banik, N. L., Happel, R., andSostek, M. 1982. Calcium-mediated degradation of filament-proteins in CNS. Trans. Am. Soc. Neurochem. 13:107.Google Scholar
  32. 32.
    Guroff, G. 1964. A neutral calcium-activated proteinase from the soluble fraction of rat brain. J. Biol. Chem. 239:149–155.Google Scholar
  33. 33.
    Kishimoto, A., Kajikawa, N., Tabuchi, H., Makoto, S., andNishiziuk, Y. 1981. Calcium dependent neutral proteinase, widespread occurrence of a species of protease active at lower concentration of calcium. J. Biochem. 90:889–892.Google Scholar
  34. 34.
    Ishiura, S. 1981. Calcium dependent proteolysis in living cells. Life Sci. 29:1079–1087.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Naren L. Banik
    • 1
  • Edward L. Hogan
    • 1
  • James M. Powers
    • 1
  • Lily J. Whetstine
    • 1
  1. 1.Departments of Neurology and Pathology (Neuropathology)Medical University of South CarolinaCharleston

Personalised recommendations