Neurochemical Research

, Volume 7, Issue 12, pp 1453–1463 | Cite as

Diffusion of intracerebrally injected [1-14C]arachidonic acid and [2-3H]Glycerol in the mouse brain

Effects of ischemia and electroconvulsive shock
  • Maria F. Pediconi
  • Elena B. Rodriguez de Turco
  • Nicolas G. Bazan
Original Articles


[2-3H]Glycerol and [1-14C]arachidonic acid were injected into the region of the frontal horn of the left ventricle of mice and were distributed rapidly throughout the brain. After 10 sec, most of the radioactive fatty acid was found in the hemisphere near the injection site; after 10 min, it was recovered in similar proportions in the cerebellum and brain stem. [2-3H]Glycerol showed a heterogeneous distribution, with most of the label remaining in the left hemisphere even after 10 min. On a fresh weight basis, cerebrum, cerebellum, and brain stem were found to contain similar amounts of labeled glycerol. However, the amount of [1-14C]arachidonate in cerebrum was only 50% of that recovered from cerebellum or brain stem. Brain ischemia or a single electroconvulsive shock reduced the spread of the label, producing an accumulation of radioactivity in the injected hemisphere, except for an increase in [2-3H]glycerol in the brain stem during ischemia. Despite the significant decrease in available precursor in the cerebellum and brain stem after electroshock, the amount of label incorporated into lipids was not altered in these areas and only slightly diminished in the cerebrum.


Glycerol Ischemia Left Ventricle Arachidonic Acid Mouse Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sun, G. Y., andHorrocks, L. A. 1969. The metabolism of palmitic acid in the phospholipids, neutral glycerides and galactolipids of mouse brain. J. Neurochem. 16:181–189.Google Scholar
  2. 2.
    Cook, H. W. 1978. Incorporation, metabolism and positional distribution of trans-unsaturated fatty acids in developing and mature brain. Comparison of elaidate and oleate administered intracerebrally. Biochim. Biophys. Acta 531:245–256.Google Scholar
  3. 3.
    Dhopeshwarkar, G. A., andSubramanian, C. 1979. Lipogenesis in the developing brain: Utilization of radioactive leucine, isoleucine, octanoic acid and beta-hydroxy-butyric acid. Lipids 14:47–51.Google Scholar
  4. 4.
    Rodriguez de Turco, E. B., Cascone, G. D., Pediconi, M. F., andBazan, N. G. 1977. Phosphatidate, phosphatidylinositol, diacylglycerols, and free fatty acids in the brain following electroshock, anoxia or ischemia. Adv. Exp. Med. Biol. 83:389–396.Google Scholar
  5. 5.
    Ansell, G. B., andSpanner, S. 1975. The metabolism of choline in regions of rat brain and the effect of hemicholinum-3. Biochem. Pharmacol. 22:1719–1723.Google Scholar
  6. 6.
    Pickard, M. R., andHawthorne, J. N. 1978. The labelling of nerve ending phospholipids in guinea-pig brain in vivo and the effect of electrical stimulation on phosphati-dylinositol metabolism in prelabelled synaptosomes. J. Neurochem. 30:145–155.Google Scholar
  7. 7.
    O'Brien, J. F., andGeison, R. L. 1974. Incorporation of [2-3H]glycerol into rat brain 1,2-diacyl-sn-glycero-3-phosphorylcholine and 1,2-diacyl-sn-glycerol molecular species in vivo. J. Lipid Res. 15:44–49.Google Scholar
  8. 8.
    Yau, T. M., andSun, G. Y. 1974. The metabolism of [1-14C]arachidonic acid in the neutral glycerides and phosphoglycerides of mouse brain. J. Neurochem. 23:99–104.Google Scholar
  9. 9.
    Sun, G. Y. 1977. Metabolism of arachidonate and stearate injected simultaneously into the mouse brain. Lipids 12:661–665.Google Scholar
  10. 10.
    Lunt, G. G., andPickard, M. R. 1975. The subcellular localization of carbamylcholine-stimulated phosphatidylinositol turnover in rat cerebral cortex in vivo. J. Neurochem. 24:1203–1208.Google Scholar
  11. 11.
    Wise, R. W., Macquarrie, R., andSun, G. Y. 1979. In vivo desaturation of [1-14C]stearate in the developing mouse brain. J. Neurochem. 33:351–354.Google Scholar
  12. 12.
    Sun, G. Y., andYau, T. M. 1976. Incorporation of [1-14C]oleic acid and [1-14]arachidonic acid into lipids in the subcellular fractions of mouse brain. J. Neurochem. 27:87–92.Google Scholar
  13. 13.
    Friedel, R. O., andSchanberg, S. M. 1971. Incorporation in vivo of intracisternally injected32Pi into phospholipids of rat brain. J. Neurochem. 18:2191–2200.Google Scholar
  14. 14.
    Friedel, R. O., andSchanberg, S. M. 1972. Effects of carbamylcholine and atropine on incorporation in vivo of intracisternally injected33Pi into phospholipids of rat brain. J. Pharmacol. Exp. Ther. 183:326–334.Google Scholar
  15. 15.
    Luthra, M. G., andSheltawy, A. 1976. The metabolic turnover of molecular species of phosphatidylinositol and its precursor of phosphatidic acid in guinea-pig cerebral hemispheres. J. Neurochem. 27:1503–1511.Google Scholar
  16. 16.
    Beleslin, D., Stojanovic, N., Dimitrijevic, M., andSamardzic, R. 1978. Metabolism of [1-14C]palmitic acid in the cat's brain. C. R. Soc. Biol. 172:269–273.Google Scholar
  17. 17.
    Stojanovic, N., Dimitrijevic, M., Samardzic, R., andBeleslin, D. 1978. Distribution of [1-14C]palmitic acid in brain tissue after intraventricular injection in the conscious cat. C. R. Soc. Biol. 172:79–83.Google Scholar
  18. 18.
    Beleslin, D. B., Stojanovic, N. M., andDimitrijevic, L. 1975. Distribution of [4-14C]cholesterol in the brain tissue after its intraventricular injection into conscious cats. J. Neurochem. 24:837–838.Google Scholar
  19. 19.
    Beleslin, D. B., Stojanovic, N. M., andDimitrijevic, L. 1976. Further studies on the distribution of [4-14C]cholesterol in the brain tissue after its intraventricular injection into conscious cats. J. Neurochem. 26:643–645.Google Scholar
  20. 20.
    Baker, R. R., andThompson, W. 1972. Positional distribution and turnover of fatty acids in phsophatidic acid, phosphoinositides, phosphatidylcholine and phosphatidylethanolamine in rat brain in vivo. Biochim. Biophys. Acta 270:489–503.Google Scholar
  21. 21.
    Brauning, C., andGercken, G. 1976. Differential distribution of [U-14C]glucose and [U-14C]glycerol among molecular species of phosphatidylcholine, phosphatidylethanolamine and 1,2-diacylglycerol in rabbit brain. J. Neurochem. 26:1257–1261.Google Scholar
  22. 22.
    Bazan, H. E. P., andBazan, N. G. 1976. Phospholipid composition and [14C]glycerol incorporation into glycerolipids of toad retina and brain. J. Neurochem. 27:1051–1057.Google Scholar
  23. 23.
    Benjamins, J. A., andMcKhan, N. M. 1973. [2-3H]glycerol as a precursor of phospholipids in rat brain: evidence for lack of recycling. J. Neurochem. 20:1111–1120.Google Scholar
  24. 24.
    Bazan, N. G., Bazan, H. E. P., Kennedy, W. G., andJoel, C. D. 1971. Regional distribution and rate of production of free fatty acids in rat brain. J. Neurochem. 18:1387–1393.Google Scholar
  25. 25.
    Jenkins, B. T., andHajra, A. K. 1976. Glycerol kinase and dihydroxyacetone kinase in rat brain. J. Neurochem. 26:377–385.Google Scholar
  26. 26.
    Bazan, N. G. 1970. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218:1–10.Google Scholar
  27. 27.
    Bazan, N. G., andRakowski, H. 1970. Increased levels of brain free fatty acids after electroconvulsive shock. Life Sci. 9:501–507.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Maria F. Pediconi
    • 1
  • Elena B. Rodriguez de Turco
    • 1
  • Nicolas G. Bazan
    • 1
  1. 1.Instituto de Investigaciones BioquimicasUniversidad Nacional del Sur-Consejo Nacional de Investigaciones Cientificas y TechnicasBahia BlancaArgentina

Personalised recommendations