Neurochemical Research

, Volume 7, Issue 12, pp 1445–1452 | Cite as

Retinal pigment epithelium contains a distinctive strychnine-binding site

  • Stephen C. Bondy
  • John M. Werdel
  • R. Theodore Fletcher
  • Gerald J. Chader
Original Articles


Membranes prepared from the retinal pigment epithelium of several species possess a specific site which binds [3H]strychnine. This binding has a somewhat lower affinity and a much greater density than the corresponding interaction in the hindbrain or neural retina. Binding is not greatly altered in the presence of 10−3 M glycine,l-alanine, β-alanine, taurine, or serine. Thus, the receptor does not resemble the classical glycine receptor of the hindbrain and spinal cord. This new type of binding site appears to be confined to the pigment epithelial layer of the retina.


Spinal Cord Glycine Retina Serine Taurine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, J., andMakman, M. 1972. Localized binding of [3H]muscimol to synapses in chick retina. Proc. Natl. Acad. Sci. USA 78:643–647.Google Scholar
  2. 2.
    Biziere, K., andCoyle, J. T. 1979. Localization of receptors for kainic acid on neurons in the inner nuclear layer of retina.Neuropharmacology 18:409–413.Google Scholar
  3. 3.
    Hruska, R., White, R., Azari, J., andYamamura, H. 1978. Muscarinic cholinergic receptors in mammalian retina. Brain Res. 148:493–498.Google Scholar
  4. 4.
    Osborne, N. 1980. Benzodiazepine binding in retina. Neurosci. Lett. 16:167–170.Google Scholar
  5. 5.
    Paul, S. M., Zatz, M., andSkolnick, P. 1980. Demonstration of brain specific benzodiazepine receptors in rat retina. Brain Res. 187:243–246.Google Scholar
  6. 6.
    Yazulla, S., andBrecha, N. 1981. Localized binding of [3H]muscimol to synapses in chicken retina. Proc. Natl. Acad. Sci. 78:643–647.Google Scholar
  7. 7.
    Kennedy, A. J., Neal, M. J., andLolley, R. 1977. The distribution of amino acids within the rat retina. J. Neurochem. 29:157–159.Google Scholar
  8. 8.
    Berger, S. J., McDaniel, M. L., Carter, J. G., andLowry, O. H. 1977. Distribution of four potential transmitter amino acids in monkey retina. J. Neurochem. 28:159–163.Google Scholar
  9. 9.
    Neal, M. J., Peacock, D. J., andWhite, R. D. 1973. Kinetic analysis of amino acid uptake by the rat retina in vitro. Brit. J. Pharmacol. 47:656–657.Google Scholar
  10. 10.
    Voaden, M. J., Marshall, J., andMurani, N. 1974. The uptake of [3H]gamma-aminobutyric acid and [3H]glycine by the isolated retina of the frog. Brain Res. 67:115–132.Google Scholar
  11. 11.
    Ehinger, B., andLindberg, B. 1974. Light-evoked release of glycine from the retina. Nature 251:727–728.Google Scholar
  12. 12.
    Schaffer, J. M., andAnderson, S. M. 1981. Identification of strychnine binding sites in the rat retina. J. Neurochem. 36:1597–1600.Google Scholar
  13. 13.
    Borbe, H. O., Muller, W. E., andWollert, U. 1981. Specific [;3H]strychnine binding associated with glycine receptors in bovine retina. Brain Res. 205:131–139.Google Scholar
  14. 14.
    Nilsson, S. E. G. 1980. Electrophysiological responses related to the pigment epithelium and its interaction with the receptor layor. Pages 69–80,in Lolley, R. N. andBazan, N. G. (eds.), Neurochemistry of the Retina. Pergamon Press, London.Google Scholar
  15. 15.
    Berman, E. R., Schwell, H., andFeeney, L. 1974. The retinal pigment epithelium chemical composition and structure. Invest. Opthalmol. 13:675–681.Google Scholar
  16. 16.
    Krishna, G., Krishnan, N., Fletcher, R. T., andChader, G. J. 1976. Effects of light on cyclic GMP metabolism in retinal photoreceptors. J. Neurochem. 27:717–722.Google Scholar
  17. 17.
    Newsome, D. A., Fletcher, R. T., Robinson, W. G., Kenyon, K., andChader, G. J. 1974. Effects of cyclic AMP and Sephedex fractions of chick embryo extract on cloned retinal pigmented epithelium in tissue culture. J. Cell Biol. 61:369–382.Google Scholar
  18. 18.
    Bondy, S. C. 1982. Neurotransmitter binding interactions as a screen for neurotoxicity. Pages 25–50,in Vernadakis, A. andPrasad, K. N. (eds.), Mechanisms of Neurotoxic Substances. Raven Press, New York.Google Scholar
  19. 19.
    Agrawal, A. K., Seth, P. K., Squibb, R. S., Tilson, H. A., Uphouse, L. L., andBondy, S. C. 1981. Neurotransmitter receptors in brain regions of acrylamide-treated rats. Pharmacol. Biochem. Behav. 14:527–531.Google Scholar
  20. 20.
    Yamamura, H. I., Enna, S. J., andKuhar, M. J. 1978. Neurotransmitter Receptor Binding. Raven Press, New York.Google Scholar
  21. 21.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  22. 22.
    Atlasik, B., Stephen, K., andWilczok, T. 1980. Interaction of drugs with ocular melanin in vitro. Exptl. Eye Res. 30:325–331.Google Scholar
  23. 23.
    Israel, P., Masterson, E., Goldman, A. I., Wiggert, B., andChader, G. J. 1980. Retinal pigment epithelial cell differentiation in vitro influence of culture medium. Invest. Opthalmol. Vis. Sci. 19:720–727.Google Scholar
  24. 24.
    Scatchard, G. 1949. The attraction of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51:660–672.Google Scholar
  25. 25.
    Muller, W. E., andSnyder, S. H. 1978. Strychnine binding associated with synaptic glycine receptors in rat spinal cord membranes: ionic influences. Brain Res. 147:107–116.Google Scholar
  26. 26.
    LeFort, D., Henke, H., andCuenod, M. 1978. Glycine specific [3H]strychnine binding in the pigeon CNS. J. Neurochem. 30:1287–1291.Google Scholar
  27. 27.
    Hunt, P., andRaynaud, J. P. 1977. Benzodiazepine activity: is interaction with the glycine receptor as evidenced by displacement of strychnine binding, a useful criterion? J. Pharm. Pharmacol. 29:442–444.Google Scholar
  28. 28.
    Korol, S., andOwens, G. W. 1974. Glycine, strychnine, and retinal inhibition. Experientia 30:1161–1166.Google Scholar
  29. 29.
    Yates, R. A., andKeen, P. 1975. The effects of optic stalk section on the amino acid content of rat retina. Brain Res. 99:166–169.Google Scholar
  30. 30.
    Young, A. B. andSnyder, S. H. 1973. Strychnine binding associated with glycine receptors of the central nervous system. Proc. Natl. Acad. Sci. USA. 70:2832–2836.Google Scholar
  31. 31.
    Voaden, M. J., Lake, N., Marshall, J., andMorjaria, B. 1977. Studies on the distribution of taurine and other neuroactive amino acids in the retina. Exptl. Eye Res. 25:249–257.Google Scholar
  32. 32.
    Lake, N., Marshall, J., andVoaden, M. J. 1977. The entry of taurine into the neural retina and pigment epithelium of the frog. Brain Res. 128:497–503.Google Scholar
  33. 33.
    Steinberg, R. H. andMiller, S. 1979. Transport and membrane properties of the retinal pigment epithelium. Pages 205–225,in Zinn, K. andMarmor, M. (eds.), The Retinal Pigment Epithelium. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  34. 34.
    Yoshikami, S., George, J. S., andHagins, W. A. 1980. Light-induced calcium fluxes from outer segment layer of vertebrate retinas. Nature 286:395–398.Google Scholar
  35. 35.
    Burnside, B. andLaties, A. M. 1979. Pigment movement and cellular contractility in the retinal pigment epithelium. Pages 175–191,in Zinn, K., andMarmor, M. (eds.), The Retinal Pigment Epithelium. Harvard University Press, Cambridge, Massachusetts.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Stephen C. Bondy
    • 1
  • John M. Werdel
    • 1
  • R. Theodore Fletcher
    • 2
  • Gerald J. Chader
    • 2
  1. 1.Laboratory of Behavioral and Neurological ToxicologyNational Institute of Environmental Health SciencesResearch Triangle Park
  2. 2.Laboratory of Vision Research National Eye InstituteNational Institutes of HealthBethesda

Personalised recommendations