Neurochemical Research

, Volume 6, Issue 9, pp 1019–1033 | Cite as

High-affinity binding ofl-glutamate to chick retinal membranes

  • A. M. López-Colomé
Original Articles


Binding ofl-[3H]glutamate to membranes from whole chick retina and from subcellular fractions enriched with photoreceptor terminals (P1), or terminals from the inner plexiform layer (P2) was studied. Na+-dependent and Na+-independent binding to these membranes was demonstrated. Na+-independent binding was stereospecific. Kinetic analysis of the binding process indicated a single high-affinity system (KB=0.55 μM) with a capacity of approximately 20 pmoles/mg protein in all the membrane fractions. [3H]Glutamate binding to P1 and P2 fractions was effectively displaced by several structural analogues of glutamate. Glutamate diethyl-ester appreciably displaced binding, whereas kainic acid did not displace bound glutamate. Data indicate the binding of [3H]glutamate to physiologically relevant receptors in the chick retina.


Glutamate Retina Kinetic Analysis Membrane Fraction Structural Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Curtis, D. R., andWatkins, J. C. 1960. The excitation and depression of spinal neurones by structurally related amino acids. J. Neurochem 6:117–141.Google Scholar
  2. 2.
    Krnjević, K., andPhillis, J. W. 1963. Iontophoretic studies of neurones in the mammalian cerebral cortex. J. Physiol. (London) 165:274–304.Google Scholar
  3. 3.
    Coombs, J. S., Eccles, J. C., andFatt, P. 1955. The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory postsynaptic potential. J. Physiol. (London) 130:326–373.Google Scholar
  4. 4.
    Dowling, J. E., andRipps, H. 1973. Effect of magnesium on horizontal cell activity in the skate retina. Nature, Lond. 242:101–103.Google Scholar
  5. 5.
    Trifonov, Y. A., 1968. Study of synaptic transmission between photoreceptors and horizontal cells by means of electrical stimulation of the retina. Biofizika 13:809–817.Google Scholar
  6. 6.
    Neal, M. J. 1976. Amino acid transmitter substances in the vertebrate retina. Gen. Pharmac. 7:321–332.Google Scholar
  7. 7.
    Murakami, M., Ohtsu, K., andOhtsuka, T. 1972. Effects of chemicals on receptors and horizontal cells in the retina. J. Physiol. (London) 227:899–913.Google Scholar
  8. 8.
    Cervetto, L., andPiccolino, M. 1974. Synaptic transmission between photoreceptors and horizontal cells in the turtle retina. Science, 183:417–419.Google Scholar
  9. 9.
    Gershenfeld, H. M., andPiccolino, M. 1979. Pharmacology of the connections of cones and L-Horizontal cells in the vertebrate retina. Pages 213–226, inSchmitt, F. O. andWorden, F. G. (eds.) The Neurosciences: Fourth Study Program, MIT Press, Cambridge, Mass.Google Scholar
  10. 10.
    Kennedy, A. J., andVoaden, M. J. 1974. Distribution of free amino acids in the frog retina. Biochem. Soc. Trans. 2:1256–1258.Google Scholar
  11. 11.
    Neal, M. J., andWhite, R. D. 1971. Uptake of14C-L-glutamate by rat retina. Br. J. Pharm. 43:442–443.Google Scholar
  12. 12.
    White, R. D., andNeal, M. J. 1976. The uptake of L-glutamate by the retina. Brain Res. 111:79–83.Google Scholar
  13. 13.
    Thomas, N. T., andRedburn, D. A. 1978. Uptake of14C-aspartic acid and14C-glutamic acid by retinal synaptosomal fractions. J. Neurochem. 31:63–68.Google Scholar
  14. 14.
    Neal, M. J., Collins, G. G., andMassey, S. C. 1979. Inhibition of aspartate release from the retina of the anaesthetised rabbit by stimulation with light flashes. Neurosci. Lett. 14:241–245.Google Scholar
  15. 15.
    Yazulla, S., andKleinschmidt, J. 1980. The effects of intraocular injection of kainic acid on the synaptic organization of the goldfish retina. Brain Res. 182:287–301.Google Scholar
  16. 16.
    Slaughter, M. M., andMiller, R. F. 1981. 2-Amino-4-Phosphonobutyric acid: A new pharmacological tool for retina research. Science 211:182–185.Google Scholar
  17. 17.
    Sano, K., andRoberts, E. 1963. Binding of γ-aminobutyric acid by mouse brain preparations. Biochem. Pharmacol. 12:489–502.Google Scholar
  18. 18.
    Peck, E. J., Schaeffer, J. M., andClark, J. H. 1973. γ-Aminobutyric acid, bicuculline and postsynaptic binding sites. Biochem. Biophys. Res. Commun. 52:394–400.Google Scholar
  19. 19.
    Zukin, S. R., Young, A. B., andSnyder, S. H. 1974. Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc. Natl. Acad. Sci. (USA) 71:4802–4807.Google Scholar
  20. 20.
    Enna, S. J., andSnyder, S. H. 1976. Properties of γ-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res. 100:81–97.Google Scholar
  21. 21.
    Enna, S. J., andSnyder, S. H. 1976. Gamma-aminobutyric acid (GABA) receptor binding in mammalian retina. Brain Res. 115:174–179.Google Scholar
  22. 22.
    De Feudis, F. U., Orensanz Munoz, L. M., andFando, J. L. 1978. High-affinity glycine binding sites in rat CNS: regional variation and strychnine sensitivity. Gen. Pharmac. 9:171–176.Google Scholar
  23. 23.
    Snyder, S. H. 1975. The glycine synaptic receptor in the mammalian central nervous system. Br. J. Pharmac. 53:473–484.Google Scholar
  24. 24.
    Roberts, P. J. 1974. Glutamate receptors in rat central nervous system. Nature (London) 252:399–401.Google Scholar
  25. 25.
    Michaelis, E. K., Michaelis, M. L., andBoyarsky, L. L. 1974. High-affinity glutamate binding to brain synaptic membranes. Biochim. Biophys. Acta 367:338–348.Google Scholar
  26. 26.
    Michaelis, E. K. 1975. Partial purification and characterization of a glutamate-binding membrane glycoprotein from rat brain. Biochem. Biophys. Res. Commun. 65:1004–1012.Google Scholar
  27. 27.
    De Robertis, E., andFiszer de Plazas, S. 1976. Isolation of hydrophobic proteins binding amino acids. Selectivity of the binding ofl-[14C]glutamate in cerebral cortex. J. Neurochem. 26:1237–1243.Google Scholar
  28. 28.
    Foster, A. C., andRoberts, P. J. 1978. High-affinityl-[3H]glutamate binding to postsynaptic receptor sites on rat cerebellar membranes. J. Neurochem. 31:1467–1477.Google Scholar
  29. 29.
    Head, R. H., Tunnicliff, G., andMatheson, G. K. 1980. Glutamate receptor binding to cat central nervous system membranes. Can. J. Biochem. 58:534–538.Google Scholar
  30. 30.
    Neal, M. J., andAtterwill, C. K. 1974. Isolation of photoreceptor and conventional nerve terminals by subcellular fractionation of rabbit retina. Nature 251:331–333.Google Scholar
  31. 31.
    López-Colomé, A. M., Salceda, R., andPasantes-Morales, H. 1978. Potassium-stimulated release of GABA, glycine and taurine from the chick retina. Neurochem. Res. 3:431–441.Google Scholar
  32. 32.
    Fricke, V. 1975. Tritosol: A New scintillation cocktail based on Triton-X-100. Anal. Biochem. 63:555–558.Google Scholar
  33. 33.
    Lowry, O. H., Rosebrough, W. J., Farr, A. L., andRandall, R. S. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193:265–275.Google Scholar
  34. 34.
    Young, A. B., andSnyder, S. H. 1973. Strychnine binding associated with glycine receptors of the central nervous system. Proc. Nat. Acad. Sci. (USA) 70:2832–2836.Google Scholar
  35. 35.
    Baudry, M., andLynch, G. 1979. Regulation of glutamate receptors by cations. Nature 282:748–750.Google Scholar
  36. 36.
    Yoneda, Y., andKuriyama, K. 1980. Presence of a low molecular weight endogenous inhibitor of [3H]muscimol binding in synaptic membranes. Nature 285:670–673.Google Scholar
  37. 37.
    Shariff, N. A., andRoberts, P. J. 1980. Problems associated with the binding ofl-glutamic acid to synaptic membranes: Methodological aspects. J. Neurochem. 34:779–784.Google Scholar
  38. 38.
    Biziere, K., Thompson, H., andCoyle, J. T. 1980. Characterization of specific, highaffinity binding sites forl-[3H]glutamic acid in rat brain membranes. Brain Res. 183:421–433.Google Scholar
  39. 39.
    Herndon, R. M., andCoyde, J. T. 1977. Selective destruction of neurons by a transmitter agonist. Science 198:71–72.Google Scholar
  40. 40.
    McGeer, E. G., McGeer, P. L., andSingh, K. 1978. Kainate-induced degeneration of neostriatal neurons: dependency upon corticostriatal tract. Brain. Res. 139:381–383.Google Scholar
  41. 41.
    Coyle, J. T., Biziere, K., andSchwarcz, R. 1978. Neurotoxicity of excitatory amino acids in the neural retinal. Pages 177–188, inMcGeer, E. G. et al. (eds.), Kainic acid as a tool in neurobiology, Raven Press, New York.Google Scholar
  42. 42.
    Le Fort, D., Henke, H., andCuénod, M. 1978. Glycine specific [3H]strychnine binding in the pigeon CNS. J. Neurochem 30:1287–1291.Google Scholar
  43. 43.
    Wang, Y. J., Salvaterra, P., andRoberts, E. 1979. Characterization of [3H]muscimol binding to mouse brain membranes. Biochem. Pharmacol. 28:1123–1128.Google Scholar
  44. 44.
    Toffano, G., Guidotti, A., andCosta, E. 1978. Purification of an endogenous protein inhibitor of the high affinity binding of γ-aminobutyric acid to synaptic membranes of rat brain. Proc. Natl. Acad. Sci. (USA) 75:4024–4028.Google Scholar
  45. 45.
    Ehinger, B., andFlack, B. 1971 Autoradiography of some suspected neurotransmitter substances: GABA, glycine, glutamic acid, histamine, dopamine andl-DOPA. Brain Res. 33:157–172.Google Scholar
  46. 46.
    Bergey, G. K., Martin, M. R., andHermes, M. 1980. Effect ofD-l-α aminoadipate on postsynaptic amino acids responses in cultured mouse spinal cord neurons. Brain Res. 193:199–207.Google Scholar
  47. 47.
    Padjen, A. L., andSmith, P. A. 1980 Specific effects of α-D,l-aminoadipic acid on synaptic transmission in frog spinal cord. Can. J. Physiol. Pharmacol. 58:692–698.Google Scholar
  48. 48.
    Johnston, G. A. R. 1979. Central Nervous System Receptors for Glutamic acid. Pages 177–185, inFiler, L. J., Jr. et al. (eds.) Glutamic Acid: Advances in Biochemistry and Physiology Raven Press, New York.Google Scholar
  49. 49.
    Michaelis, E. K., Michaelis, M. L., andGrubbs, R. D. 1980. Distinguishing characteristics between glutamate and kainic acid binding sites in brain synaptic membranes. FEBS Letters 118:55–57.Google Scholar
  50. 50.
    Seil, F. J., andWoodward, W. R. 1980. Kainic acid neurotoxicity in granuloprival cerebellar cultures. Brain Res. 197:285–289.Google Scholar
  51. 51.
    Hall, J. G., Hicks, T. P., andMcLennan, H. 1978. Kainic acid and the glutamate receptor. Neurosci. Lett. 8:171–175.Google Scholar
  52. 52.
    Simon, J. R., Contrera, J. F., andKuhar, M. J. 1976. Binding of [3H]kainic acid, an analogue ofl-glutamate, to brain membranes. J. Neurochem. 26:141–147.Google Scholar
  53. 53.
    Murakami, M., Ohtsuka, T., andShimasaki, H. 1975. Effects of aspartate and glutamate on the bipolar cells of the carp retina. Vision Res. 15:456–458.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • A. M. López-Colomé
    • 1
  1. 1.Centro de Investigaciones en Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxico 20Mexico

Personalised recommendations