Advertisement

Neurochemical Research

, Volume 6, Issue 9, pp 969–977 | Cite as

Tissue specificity of dopamine effects on brain ATPases

  • M. Antonelli de Lima Gómez
  • G. Rodríguez de Lores Arnaiz
Original Articles

Abstract

Dopamine inhibits Mg2+,Na+,K+- and Na+,K+-ATPase activities but does not modify Mg2+-ATPase activity of nerve ending membranes isolated from rat cerebral cortex. In the presence of the soluble fraction of brain, dopamine activates total, Na+,K+-, and Mg2+-ATPases. Dopamine stimulation of nerve ending membrane ATPases is achieved when soluble fractions of brain, kidney, or liver are used. On the other hand, dopamine effects are not observed on kidney or heart ATPase preparations. These results indicate tissue specificity of dopamine effects with respect to the enzyme source; there is no tissue specificity for the requirement of the soluble fraction to achieve stimulation of ATPases by dopamine.

Keywords

Dopamine Cerebral Cortex ATPase Activity Soluble Fraction Tissue Specificity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yoshimura, K. 1973. Activation of Na-K activated ATPase in rat brain by catecholamine. J. Biochem. 74:389–391.Google Scholar
  2. 2.
    Godfraind, T., Kock, M. C., andVerbeke, N. 1974. The action of EGTA on the catecholamines stimulation of rat brain Na-K-ATPase. Biochem. Pharmacol. 23:3505–3511.Google Scholar
  3. 3.
    Schaefer, A., Seregi, A., andKomlos, M. 1974. Ascorbic acid-like effect of the soluble fraction of rat brain on adenosine triphosphatases and its relation to catecholamines and chelating agents. Biochem. Pharmacol. 23:2257–2271.Google Scholar
  4. 4.
    Desaiah, D., andHo, T. K. 1977. Kinetics of catecholamine sensitive Na+-K+-ATPase activity in mouse brain synaptosomes. Biochem. Pharmacol. 26:2029–2035.Google Scholar
  5. 5.
    Lee, S. L., andPhillis, J. W. 1977. Stimulation of cerebral cortical synaptosomal Na-K-ATPase by biogenic amines. Can. J. Physiol. Pharmacol. 55:961–964.Google Scholar
  6. 6.
    Chappuis, A., Enz, A., andIwangoff, P. 1975. Some comments on the adrenergic regulation of the Na+-K+-ATPase system in the brain. Triangle 14:96–98.Google Scholar
  7. 7.
    Gilbert, J. C., Wyllie, M. G., andDavison, D. V. 1975. Nerve terminal ATPase as possible trigger for neurotransmitter release. Nature 255:237–238.Google Scholar
  8. 8.
    Logan, J. G., andO'Donovan, D. J. O. 1976. The effects of ouabain and the activation of neural membrane ATPase by biogenic amines. J. Neurochem. 27:185–189.Google Scholar
  9. 9.
    Rodríguez de Lores Arnaiz, G. andMistrorigo de Pacheco, M. 1978. Regulation of Na+-K+-adenosinetriphosphatase of nerve ending membranes. Action of norepinephrine and a soluble factor. Neurochem. Res. 3:733–744.Google Scholar
  10. 10.
    Rodríguez de Lores Arnaiz, G., andAntonelli, M. 1979. The soluble brain fraction modifies the effect of catecholamines and 5-hydroxytryptamine on Na+-K+-ATPase of nerve ending membranes. VII Meeting of the Int. Soc. for Neurochem. Jerusalem, Israel. September 2–6.Google Scholar
  11. 11.
    Rodríguez de Lores Arnaiz, G., Alberici, M., andde Robertis, E. 1967. Ultrastructural and enzymic studies of cholinergic and noncholinergic synaptic membranes isolated from brain cortex. J. Neurochem. 14:215–225.Google Scholar
  12. 12.
    Matsui, H., andSchwartz, A. 1966. Purification and properties of a highly active ouabain sensitive Na+-K+-dependent adenosine triphosphatase from cardiac tissue. Biochim. Biophys. Acta 128:380–390.Google Scholar
  13. 13.
    Albers, R. M., Rodríguez de Lores Arnaiz, G., andDe Robertis, E. 1965. Sodium-Potassium-activated ATPase and potassium activated p-nitrophenylphosphatase: a comparison of their subcellular localizations in rat brain. Proc. Natl. Acad. Sci. USA 53:557–564.Google Scholar
  14. 14.
    Lowry, O. H., andLópez, J. A. 1946. Determination of inorganic phosphate in presence of labile P esters. J. Biol. Chem. 162:421–428.Google Scholar
  15. 15.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  16. 16.
    Rodríguez de Lores Arnaiz, G., andAntonelli de Gómez de Lima, M. 1981. The effect of several neurotransmitter substances on nerve ending membrane ATPase. Acta Physiol. Latinoam. 31 (in press).Google Scholar
  17. 17.
    Hudgings, P. M., andBond, G. H. 1977. (Mg2+-K+) dependent inhibition of Na+ K+ ATPase due to a contaminant in equine muscle ATP. Biochem. Biophys. Res. Commun. 77:1024–1029.Google Scholar
  18. 18.
    Beaugé, L. A., andGlynn, I. M. 1977. A modifier of (Na+-K+) ATPase in commercial ATP. Nature 268:355–356.Google Scholar
  19. 19.
    Cantley, L. C., Jr., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C., andGuidotti, G. 1977. Vanadate is a potent (Na+-K+)-ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem. 252:7421–7423.Google Scholar
  20. 20.
    Desaiah, D., andHo, I. K. 1977. Kinetics of catecholamine sensitive Na+ K+ ATPase activity in mouse brain synaptosomes. Biochem. Pharmacol. 26:2029–2035.Google Scholar
  21. 21.
    Nathanson, J. A., andGreengard, P. 1976. Cyclic nucleotides and synaptic transmission. Pages 246–262, in Siegel, G., Albers, R. W., Katzman, K., and Agranoff, B. (eds.). Basic Neurochemistry, 2nd. edition, Little Brown and Co., Boston.Google Scholar
  22. 22.
    Wolfe, L. S. 1976. Prostaglandines and synaptic transmission. Pages 263–275, in Siegel, G., Albers, R. W., Katzman, K., and Agranoff, B. (eds.), Basic Neurochemistry, 2nd. edition, Little Brown and Co., Boston.Google Scholar
  23. 23.
    Brimijoin, S., Pluchino, S., andTrendelenburg, U. 1970. On the mechanism of supersensitivity to norepinephrine in the denervated cat spleen. J. Pharmacol. Exp. Ther. 175:503–513.Google Scholar
  24. 24.
    Andén, N. E., Fuxe, K., Hamberger, B., andHokfelt, T. 1966. A quantitative study of the nigro neostriatal dopamine neuron system in the rat. Acta Physiol. Scand. 67:306–312.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • M. Antonelli de Lima Gómez
    • 1
  • G. Rodríguez de Lores Arnaiz
    • 1
  1. 1.Instituto de Biología Celular Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations