Skip to main content
Log in

Appearance and phosphorylation of the 210 kDalton neurofilament protein in newborn rat brain, spinal cord, and sciatic nerve

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The appearance and in vivo phosphorylation of the 210 kDalton (kD) neurofilament protein (NF210K) in newborn rat brain, spinal cord, and sciatic nerve were invetigated. Electron microscopic examination of neurofilaments isolated from newborn rat brain and spinal cord demonstrated morphologically distinct filaments which contained cross-bridging side arms. Neurofilament proteins, phosphorylated in vivo, were separated by sodium dodecyl sulfate slab gel electrophoresis and were transferred from acrylamide gels to nitrocellulose sheets. The nitrocellulose sheets were treated with antiserum to the 70 kD, 145 kD and 210 kD neurofilament proteins by the immunoblot technique. The three neurofilament proteins were found to be present in newborn brain, spinal cord and sciatic nerve. The presence of NF210K in newborn rat brain was further confirmed by 2-dimensional gel electrophoresis followed by indentification of this protein by the immunoblot technique. Exposure of the immunostained nitrocellulose sheets to x-ray film revealed that the NF210K, NF145K, and NF70K proteins were phosphorylated in filaments prepared from newborn rat central and peripheral nervous systems. These results suggest that the synthesis and posttranslational modification of the neurofilament proteins may be synchronized or developmentally regulated. It is feasible that phosphorylation of the NF210K subunit may be a prerequisite for the formation of neurofilament cross-bridging elements which are necessary for radial growth of axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeVries, G. H., Norton, W. T., andRaine, C. S. 1972. Axons: Isolated from mammalian central nervous system. Science 1975:1370–1372.

    Google Scholar 

  2. Schlaepfer, W. W., andFreeman, L. A. 1978. Neurofilament proteins of rat peripheral nerve and spinal cord. J. Cell Biol. 78:653–662.

    PubMed  Google Scholar 

  3. Norton W. T., andGoldman, J. E. 1980. Neurofilaments. Pages 301–329,in Bradshaw, R. A., andSchneider, D. M. (eds.), Proteins of the Nervous System, 2nd edition, Raven Press, New York.

    Google Scholar 

  4. Shaw, G., andWeber, K. 1982. Differential expression of neurofilament triplet proteins in brain development. Nature 298:277–279.

    PubMed  Google Scholar 

  5. Pachter, J. S., andLiem, R. K. H. 1984. The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve. Dev. Biol. 103:200–210.

    PubMed  Google Scholar 

  6. Julien, J.-P., andMushynski, W. E. 1981. A comparison of in vitro and in vivophosphorylated neurofilament polypeptides. J. Neurochem. 37:1579–1585.

    PubMed  Google Scholar 

  7. Julien, J.-P., andMushynski, W. E. 1982. Multiple phosphorylation sites in mammalian neurofilament polypeptides. J. Biol. Chem. 257:10467–10470.

    PubMed  Google Scholar 

  8. Honchar, M. P., Bunge, M. B., andAgrawal, H. C. 1982. In vivo phosphorylation of neurofilament proteins in the central nervous system of immature rat and rabbit. Neurochem Res. 7:365–372.

    PubMed  Google Scholar 

  9. Jones, S. M., andWilliams, R. C. 1982. Phosphate content of mammalian neurofilaments. J. Biol. Chem. 257:9902–9905.

    PubMed  Google Scholar 

  10. Julien, J.-P., andMushynski, W. E. 1983. The distribution of phosphorylated sites among identified proteolytic fragments of mammalian neurofilaments. J. Biol. Chem. 258:4019–4025.

    PubMed  Google Scholar 

  11. Shecket, G., andLasek, R. J. 1982. Neurofilament protein phosphorylation. J. Biol. Chem. 256:4788–14795.

    Google Scholar 

  12. Noetzel, M. J., andAgrawal, H. C. 1983. Appearance and phosphorylation of the neurofilament proteins and GFAP in developing rat nervous system. J. Neurochem. 40:171.

    Google Scholar 

  13. Noetzel, M. J., andAgrawal, H. C. 1985. Immunoblot identification of glial fibrillary acidic protein in rat sciatic nerve, brain and spinal cord during development. Neurochem. Res. 10:737–753.

    PubMed  Google Scholar 

  14. Chiu, F.-C., Norton, W. T., andFields, K. L. 1981. The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein, and the fibroblast-type filament protein, vimentin. J. Neurochem. 37:147–155.

    PubMed  Google Scholar 

  15. Nagele, R. G., andRoisen, F. J. 1982. Ultrastructure of a new microtubule-neurofilament coupler in nerves. Brain Res. 253:31–37.

    PubMed  Google Scholar 

  16. Sato, T. 1967. A modified method for lead staining of thin sections. J. Electron Micr. 17:158–159.

    Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  18. Fishman, M. A., Hagen S., Trotter, J. L., O'Connell, K., andAgrawal, H. C. 1979. Use of a stable fluorescent reagent, 2-methoxy-2,4-diphenyl-3(2H)-furanone, for the visualization and purification of myelin proteins. J. Neurochem. 32:1077–1083.

    PubMed  Google Scholar 

  19. Laemmli, V. K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature (Lond.) 227:680–685.

    Google Scholar 

  20. Lee, V. M.-Y., Page, C. D., Wu, H.-L., andSchlaepfer, W. W. 1984. Monoclonal antibodies to gel excised glial filament protein and their reactivities with other intermediate filament proteins. J. Neurochem. 42:25–32.

    PubMed  Google Scholar 

  21. Weber, K., Shaw, G., Osborn, M., Debus, E., andGeisler, N. 1983. Neurofilaments, a subclass of intermediate filaments: Structure and expression. Cold Spring Harbor Symp. Quant. Biol. 48:717–729.

    PubMed  Google Scholar 

  22. Towbin, H., Staehelin, T., andGordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.

    PubMed  Google Scholar 

  23. Agrawal, H. C., Clark, H. B., Agrawal, D., Seil, F. J., andQuarles, R. H. 1984. Indentification of antibodies in anti-CNS and anti-PNS myelin sera by immunoblot, characterization by immunohistochemistry and their effect in tissue culture. Brain Res. 307:191–200.

    PubMed  Google Scholar 

  24. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007–4021.

    PubMed  Google Scholar 

  25. Dahl, D., Strocchi, P., andBignami, A. 1982. Vimentin in the central nervous system. Differentiation 22:185–190.

    PubMed  Google Scholar 

  26. Levine J., andWillard, M. 1981. Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells. J. Cell Biol. 90:631–643.

    PubMed  Google Scholar 

  27. Willard M, andSimon, C. 1981. Antibody decoration of neurofilaments. J. Cell Biol. 89:198–205.

    PubMed  Google Scholar 

  28. Shaw, G., andWeber, K. 1983. The structure and development of the rat retina: An immunofluorescence microscopical study using antibodies specific for intermediate filament proteins. Eur. J. Cell Biol. 30:219–232.

    PubMed  Google Scholar 

  29. Raju, T., Bignami, A., andDahl, D. 1981. In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Dev. Biol. 85:344–357.

    PubMed  Google Scholar 

  30. Leterrier, J. F., Liem, R. K. H., andShelanski, M. L. 1982. Interactions between neurofilaments and microtubule-associated proteins: A possible mechanism for intraorganellar bridging. J. Cell Biool. 95:982–986.

    Google Scholar 

  31. Geisler, N., andWeber, K. 1981. Self-assembly in vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet protein into intermediate-sized filaments. J. Mol. Biol. 151:565–571.

    PubMed  Google Scholar 

  32. Sternberger, L. A., andSternberger, N. H. 1983. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc. Nat. Acad. Sci. USA 80:6126–6130.

    PubMed  Google Scholar 

  33. Hoffman, P. N., Lasek, R. J., Griffin, J. W., andPrice, D. L. 1983. Slowing of the axonal transport of neurofilament proteins during development. J. Neurosci. 3:1694–1700.

    PubMed  Google Scholar 

  34. Lasek, R. J., Oblinger, M. M., andDrake, P. F. 1983. Molecular biology of neuronal geometry: Expression of neurofilament genes influences axonal diameter. Cold Spring Harbor Symp. Quant Biol. 48:731–744.

    PubMed  Google Scholar 

  35. Friede, R. L., andSamorajski, T. 1970. Axonal caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat. Rec. 167:379–387.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noetzel, M.J., Roots, B.I. & Agrawal, H.C. Appearance and phosphorylation of the 210 kDalton neurofilament protein in newborn rat brain, spinal cord, and sciatic nerve. Neurochem Res 11, 363–374 (1986). https://doi.org/10.1007/BF00965010

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965010

Keywords

Navigation