Skip to main content
Log in

The role of phospholipases from inflammatory macrophages in demyelination

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Activated macrophages harvested from rat peritoneum were shown to contain phospholipase A1, A2 and lysophospholipase activities which were defined on a series of radiolabelled phospholipid substrates. During in vitro culture of these elicited macrophage populations, phospholipase enzymes were secreted into the culture medium. Radiolabelled myelin, prepared from young rats after intracerebral injection of14C acetate, was used as a substrate to analyze the susceptibility of central nervous system (CNS) myelin to attack by cell-associated and secreted macrophage enzymes. Homogenates of peritoneal macrophages degraded the myelin lipids at acid pH; phosphatidyl choline (PC) and ethanolamine phosphatide (EP) were both degraded with liberation of free fatty acid and small amounts of lysolipids. The ethanolamine lipids were most vulnerable; up to 20% of this fraction was degraded in six hours. Selected batches of macrophage culture supernatant similarly degraded the myelin EP at acid pH. These results suggest that phospholipase enzymes, released from activated macrophages in close proximity to the myelin sheath, may participate in primary demyelination in inflammatory CNS lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cammer, W., Bloom, B. R., Norton, W. T., andGordon, S. S. 1978. Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: A possible mechanism of inflammatory demyelination. Proc. Natl. Acad. Sci. USA 75:1554–1558.

    PubMed  Google Scholar 

  2. Smith, M. E., Chow, S. H., andRolph, R. H. 1981 Partial purification and characterization of neutral proteases in lymph nodes of rats with experimental allergic encephalomyelitis. Neurochem. Res. 6:901–912.

    Google Scholar 

  3. Einstein, E. R., Csejtey, J., andMarks, N. 1968. Degradation of encephalitogen by purified brain proteinase. FEBS Letts. 1:191–195.

    Google Scholar 

  4. Poduslo, J. F., andBraun, P. E. 1975. Topographical arrangement of membrane proteins in the intact myelin sheath. J. Biol. Chem. 250:1099–1105.

    Google Scholar 

  5. Omlin, F. X., Webster, H. deF., Palkovits, C. G., andCohen, S. R. 1982. Immunocytochemical localization of basic protein in major dense line regions of central and peripheral myelin. J. Cell Biol. 95:242–248.

    PubMed  Google Scholar 

  6. Coles, E., McIlwain, D. L., andRapport, M. M. 1974. The activity of pure phospholipase A2 fromCrotalus atrox venom on myelin and on pure phospholipids. Biochim. Biophys. Acta 337:68–78.

    PubMed  Google Scholar 

  7. Banik, N. L., Gohil, K., andDavison, A. N. 1976. The action of snake venom, phospholipase A and trypsin on purified myelin in vitro. Biochem. J. 159:273–277.

    Google Scholar 

  8. Hall, S. M., andGregson, N. A. 1971. The in vivo and ultrastructural effects of injection of lysophosphatidylcholine into myelinated peripheral nerve fibres of the adult mouse. J. Cell Sci. 9:769–789.

    PubMed  Google Scholar 

  9. Raine, C. S., Snyder, D. H., Valsamis, M. P., andStone, S. H. 1974. Chronic experimental allergic encephalomyelitis in inbred guinea pigs. Lab. Invest. 31:369–380.

    PubMed  Google Scholar 

  10. Traugott, U., Reinherz, E. L., andRaine, C. S. 1983. Multiple sclerosis: Distribution of T cell subsets within active chronic lesions. Science 219:308–310.

    PubMed  Google Scholar 

  11. Lampert, P. 1967. Electron microscopic studies on ordinary and hyperacute experimental allergic encephalomyelitis. Acta Neuropathol. 9:99–126.

    PubMed  Google Scholar 

  12. Dal Canto, M. C., Wisniewsky, H. M., Johnson, A. G., Brostoff, S. W., andRaine, C. S. 1975. Vesicular disruption of myelin in autoimmune demyelination. J. Neurol. Sci. 24:313–319.

    PubMed  Google Scholar 

  13. Trotter, J., Flesch, I., Schmidt, B., andFerber, E. 1982. Acyltransferase-catalyzed cleavage of arachidonic acid from phospholipids and transfer to lysophosphatides in lymphocytes and macrophages. J. Biol. Chem. 257:1816–1823.

    PubMed  Google Scholar 

  14. Wightman, P. D., Dahlgren, M. E., David, P., andBonney, R. J. 1981. The selective release of phospholipase A2 by resident mouse peritoneal macrophages. Biochem. J. 200:441–444.

    PubMed  Google Scholar 

  15. Bottenstein, J. E., andSato, G. H. 1979. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517.

    PubMed  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, J. R. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  17. Koski, I. R., Poplack, D. G., andBlaese, R. M. 1976. A nonspecific esterase strain for the identification of monocytes and macrophages. Pages 359–363,in Bloom, B. R. andDavid, J. R. (eds.), Methods in Cell-Mediated and Tumor Immunity, Academic Press, New York.

    Google Scholar 

  18. Smith, M. E. 1969. An in vitro system for the study of myelin synthesis. J. Neurochem. 16:83–92.

    PubMed  Google Scholar 

  19. Martin, J. B., andDoty, D. M. 1949. Determination of inorganic phosphate. Analyt. Chem. 21:965–967.

    Google Scholar 

  20. Folch, J., Lees, M., andSloane-Stanley, G. H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497–509.

    PubMed  Google Scholar 

  21. Waite, M., andvan Deenen, L. L. M. 1967. Hydrolysis of phospholipids and glycerides by rat-liver preparations. Biochim. Biophys. Acta 137:498–517.

    PubMed  Google Scholar 

  22. Trotter, J., andSmith, M. E. 1983. Macrophage-mediated demyelination: The role of phospholipases and antibody. Pages 55–60,in Alvord, E. C., Jr., Kies, M. W., andSuckling, A. J. (eds.), EAE, a Useful Model for MS, Alan R. Liss, Inc., New York.

    Google Scholar 

  23. Davies, P., andBonney, R. J. 1980. The secretion of hydrolytic enzymes by mononuclear phagocytes. Pages 497–542,in Weissman, E. (ed.), The Cell Biology of Inflammation, Elsevier, Amsterdam.

    Google Scholar 

  24. Wightman, P. P., Humes, J. L., Davies, P., andBonney, R. J. 1981. Identification and characterization of two phospholipase A2 activities in resident mouse peritoneal macrophages. Biochem. J. 195:427–433.

    PubMed  Google Scholar 

  25. Young, P. R., Vaccante, D. A., andSnyder, W. R. 1982. Protein-induced aggregation of lipid vesicles. Mechanism of the myelin basic protein-myelin interaction. J. Am. Chem. Soc. 104:7287–7291.

    Google Scholar 

  26. Norton, W. T., andCammer, W. 1984. Isolation and characterization of myelin. Pages 147–195,in Morell, P. (ed.), Myelin, Plenum Press, New York.

    Google Scholar 

  27. Horrocks, L. A., Spanner, S., Mozzi, R., Fu, S. C., D'Amato, R. A., andKrakowka, S. 1978. Plasmalogenase is elevated in early demyelinating lesions. Pages 423–438,in Palo, J. (ed.), Myelination and Demyelination. Adv. in Exp. Med. and Biol. 100, Plenum Press, New York.

    Google Scholar 

  28. Fu, S. C., Mozzi, R., Krakowka, S., Higgins, R. J., andHorrocks, L. A. 1980. Plasmalogenase and phospholipase A1, A2, and L1 activities in white matter in canine distemper virus-associated demyelinating encephalomyelitis. Acta Neuropathol. 49:13–18.

    PubMed  Google Scholar 

  29. Woelk, H., andKanig, K. 1974. Phospholipid metabolism in experimental allergic encephalomyelitis. Activity of brain phospholipase A1 towards specifically labelled glycerophospholipids. J. Neurochem. 23:739–743.

    PubMed  Google Scholar 

  30. Woelk, H., andPeiler-Ichikawa, K. 1974. Zur aktivitat der phospholipase A2 gegenueber verscheidenin 1-Alk-1′-enyl-2-acyl-und 1-alkyl-2-acyl-verbindungen wahrend der multiplen skerose. J. Neurol. 207:319–326.

    PubMed  Google Scholar 

  31. Sedzik, J., Toews, A. D., Blaurock, A. E., andMorell, P. 1984. Resistance to disruption of multilamellar fragments of central nervous system myelin. J. Neurochem. 43:1415–1420.

    PubMed  Google Scholar 

  32. Vanguri, P., Koski, C. L., Silverman, B., andShin, M. L. 1982. Complement activation by isolated myelin: Activation of the classical pathway in the absence of myelinspecific antibodies. Proc. Natl. Acad. Sci. USA 79:3290–3294.

    PubMed  Google Scholar 

  33. Adams, D. O., andNathan, C. F. 1983. Molecular mechanisms in tumor-cell killing by activated macrophages. Immunol. Today 4:166–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trotter, J., Smith, M.E. The role of phospholipases from inflammatory macrophages in demyelination. Neurochem Res 11, 349–361 (1986). https://doi.org/10.1007/BF00965009

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965009

Keywords

Navigation