Neurochemical Research

, Volume 8, Issue 11, pp 1487–1495 | Cite as

Macromolecular changes in brain stem of morphinized rats

  • L. Rönnbäck
  • C. Wikkelsø
  • C. Blomstrand
Original Articles


Incorporation of [3H]valine into trichloroacetic acid-(TCA)-precipitable, water-soluble or membrane-bound material of whole brain and brain-stem did not differ significantly in morphine-intoxicated, morphine abstinent and control rats. The animals were intoxicated with morphine (final dose 340 mg/kg b.w.) for 15 days, using an ingestion method with no impairment of the caloric intake compared to controls. Abstinent rats were withdrawn from morphine for 2 days after 13 days of intoxication. Measurements of [3H]valine or [14C]valine incorporated into soluble or membrane-bound brain stem proteins failed to demonstrate any significant changes in specific protein bands from morphinized rats. Separation was achieved by polyacrylamide gel electrophoresis with or without sodium-dodecyl sulphate (SDS) or by isoelectric focusing. After immunoabsorption chromatography to remove those proteins antigenically similar to serum proteins, an increase in the staining intensity and in incorporation of [3H]valine into two protein bands (with isoelectric points (Ip:s) 5.75 and 7.7) was seen in brain stem from long-term morphine-intoxicated rats. The results show that macromolecular interactions are involved in long-term morphine actions.


Morphine Valine Protein Band Brain Stem Isoelectric Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clouet, D. H., andIwatsubo, K. 1975. Mechanisms of tolerance to and dependence on narcotic analgesic drugs. Ann. Rev. Pharmacol. 15:49–71.PubMedGoogle Scholar
  2. 2.
    Cox, B. M., andOsman, O. H. 1970. Inhibition of the development of tolerance to morphine in rats by drugs which inhibit ribonucleic acid or protein synthesis. Br. J. Pharmacol. 38:157–170.PubMedGoogle Scholar
  3. 3.
    Craves, F. B., Loh, H. H., andMeyerhoff, J. L. 1978. The effect of morphine tolerance and dependence on cell free protein synthesis. J. Neurochem. 31:1309–1316.PubMedGoogle Scholar
  4. 4.
    Davis, B. J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121:404–427.PubMedGoogle Scholar
  5. 5.
    Feinberg, M. P., andCochin, J. 1972. Inhibition of development of tolerance to morphine by cycloheximide. Biochem. Pharmacol. 21:3082–3085.PubMedGoogle Scholar
  6. 6.
    Franklin, G. I., andCox, B. M. 1972. Incorporation of amino acids into proteins of synaptosomal membranes during morphine treatment. J. Neurochem. 19:1821–1823.PubMedGoogle Scholar
  7. 7.
    Goodman, R. R., Snyder, S. H., Kuhar, M. J., andYoung III, W. S. 1980. Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proc. Natl. Acad. Sci. (USA) 77:6239–6243.Google Scholar
  8. 8.
    Hahn, D. L., andGoldstein, A. 1971. Amounts and turnover rates of brain proteins in morphine-tolerant mice. J. Neurochem. 18:1887–1893.PubMedGoogle Scholar
  9. 9.
    Hitzemann, R. J., andLoh, H. H. 1977. Influence of morphine on protein synthesis in synaptic plasma membranes of the rat brain. Res. Commun. Chem. Pathol. Pharmacol. 17:15–28.PubMedGoogle Scholar
  10. 10.
    Hydén, H., Bjurstam, K., andMcEwen, B. 1966. Protein separation at the cellular level by micro disc electrophoresis. Analyt. Biochem. 17:1–15.PubMedGoogle Scholar
  11. 11.
    Iwamoto, E. T., Craves, F. B., Loh, H. H., Meyerhoff, J. L. andWay, E. L. 1977. Axonal transport in nigro-neostriatal neurons during morphine tolerance development and abstinence in rats. J. Neurochem. 28:285–292.PubMedGoogle Scholar
  12. 12.
    Lee, N. M., Craves, F. B., andStokes, K. B. 1979. Effect of opiates on macromolecular biosynthesis, pages 521–539,in Loh, H. H. andRoss, D. H. (eds.) Neurochemical mechanisms of Opiates and Endorphins (Adv. Biochem. Psychopharmacol. Vol. 20), Raven Press, New York.Google Scholar
  13. 13.
    Loh, H. H., andHitzemann, R. J. 1974. Effect of morphine on the turnover and synthesis of (Leu-3H)-protein and (Ch-14C)-phosphatidylcholine in discrete regions of the rat brain. Biochem. Pharmacol. 23:1753–1765.PubMedGoogle Scholar
  14. 14.
    Loh, H. H., Shen, F. H., andWay, E. L. 1969. Inhibition of morphine tolerance and physical dependence development and brain serotonin synthesis by cycloheximide. Biochem. Pharmacol. 18:2711–2721.PubMedGoogle Scholar
  15. 15.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  16. 16.
    Mans, R. J., andNovelli, G. D. 1968. Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disc method. Arch. Biochem. Biophys. 94:48–53.Google Scholar
  17. 17.
    Ornstein, L. 1964. Disc electrophoresis. I. Background and theory. Ann. N.Y. Acad. Sci. 121:321–349.PubMedGoogle Scholar
  18. 18.
    Rönnbäck, L., Hansson, E., andCupello, A. 1983. Dose- and time-dependent effects of morphine on the incorporation of [3H]valine into soluble brain and liver proteins. Neurochem. Res. 8:353–362.PubMedGoogle Scholar
  19. 19.
    Rönnbäck, L., andHydén, H. 1980. Stimulation of a soluble protein fraction in the hippocampus of rats, subjected to brief training. J. Neurol. Sci. 48:179–190.PubMedGoogle Scholar
  20. 20.
    Shapiro, A. L., Viñuela, E., andMaizel, Jr., J. V. 1967. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun. 28:815–820.PubMedGoogle Scholar
  21. 21.
    Shashoua, V. E. 1976. Brain metabolism and the acquisition of new behaviors (Part I). (Evidence for specific changes in the pattern of protein synthesis). Brain Research 111:347–364.PubMedGoogle Scholar
  22. 22.
    Takemori, A. E. 1974. Biochemistry of drug dependence. Ann. Rev. Biochem. 43:15–33.PubMedGoogle Scholar
  23. 23.
    Takemori, A. E. 1975. Neurochemical basis for narcotic tolerance and dependence. Biochem. Pharmacol. 24:2121–2126.PubMedGoogle Scholar
  24. 24.
    Vesterberg, O. 1972. Isoelectric focusing of proteins in polyacrylamide gels. Biochim. Biophys. Acta 257:11–19.PubMedGoogle Scholar
  25. 25.
    Vesterberg, O. 1973. Isoelectric focusing of proteins in thin-layers of polyacrylamide gel. Sci. Tools 20:22–29.Google Scholar
  26. 26.
    Wikkelsø, C., Blomstrand, C., andRönnbäck, L. 1980. Separation of cerebrospinal fluid specific proteins—a methodological study. Part I. J. Neurol. Sci. 44:247–257.PubMedGoogle Scholar
  27. 27.
    Zeuchner, J., Rosengren, L., Wronski, A., andRönnbäck, L. 1982. A new ingestion method for long-term morphine intoxication in rat. Pharmacol. Biochem. Behav. 17:495–501.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • L. Rönnbäck
    • 1
    • 2
  • C. Wikkelsø
    • 1
    • 2
  • C. Blomstrand
    • 1
    • 2
  1. 1.Institute of NeurobiologyUniversity of GöteborgGöteborgSweden
  2. 2.Department of NeurologyUniversity of GöteborgGöteborgSweden

Personalised recommendations