Neurochemical Research

, Volume 8, Issue 11, pp 1407–1415 | Cite as

Inhibition of Na+, K+-ATPase activity by δ-aminolevulinic acid

  • V. A. Russell
  • M. C. L. Lamm
  • J. J. F. Taljaard
Original Articles


δ-Aminolaevulinic acid (ALA) has been shown to be toxic to cultured neurons and glia at concentrations as low as 10 μM. In an attempt to elucidate the mechanism of toxicity, the effects of ALA on membrane ATPase activity were investigated. Exposure of neuron cultures to 1 mM ALA for 7 days caused a substantial decrease in both Na+, K+-ATPase and Mg2+-ATPase activities. At lower concentrations, ALA affected only the Na+, K+-component. ALA appeared to act directly, inhibiting Na+, K+-ATPase activity in rat brain cortex membrane preparations at 10 μM Although this effect was slight, it may well represent the mechanism of action of ALA, since ouabain, a potent inhibitor of Na+, K+-ATPase activity, proved to be more toxic to cultured neurons than ALA. Furthermore, cardiac glycoside overdosage causes neurological disturbances which are very similar to those observed in the acute attack of porphyria.


Glycoside ATPase Activity Potent Inhibitor Ouabain Acute Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sassa, S., andKappas, A. 1981. Genetic, metabolic and biochemical aspects of the porphyrias. Adv. Hum. Genet. 11:121–231.PubMedGoogle Scholar
  2. 2.
    Lee, W. R. 1981. What happens in lead poisoning? J. R. Coll. Physicians Lond. 15:48–54.PubMedGoogle Scholar
  3. 3.
    Cutler, M. G., Moore, M. R., andEwart, F. G. 1979. Effects of δ-aminolaevulinic acid administration on social behaviour in the laboratory mouse. Psychopharmacol. 61:131–135.Google Scholar
  4. 4.
    Sima, A. A. F., Kennedy, J. C., Blakeslee, D., andRobertson, D. M. 1981. Experiment porphyric neuropathy: A preliminary report. Can. J. Neurol. Sci. 8:105–114.PubMedGoogle Scholar
  5. 5.
    Russell, V. A., Lamm, M. C. L., andTaljaard, J. J. F. 1982. Effects of δ-aminolaevulinic acid porphobilinogen and structurally related amino acids on 2-deoxyglucose uptake in cultured neurons. Neurochem. Res. 7:1009–1022.PubMedGoogle Scholar
  6. 6.
    Nicoll, R. A. 1976. The interaction of porphyrin precursors with GABA receptors in the isolated frog spinal cord. Life Sci. 19:521–526.PubMedGoogle Scholar
  7. 7.
    Müller, W. E., andSnyder, S. H. 1977. δ-Aminolaevulinic acid: Influences on synaptic GABA receptor binding may explain CNS symptoms of porphyria. Ann. Neurol. 2:340–342.PubMedGoogle Scholar
  8. 8.
    Brennan, M. J. W., andCantrill, R. C. 1979. δ-Aminolaevulinic acid is a potent agonist for GABA autoreceptors. Nature 280:514–515.PubMedGoogle Scholar
  9. 9.
    Sokoloff, L., 1981 Circulation and energy metabolism of the brain. Pages 471–495,in Siegel, G. J., Albers, R. W., Agranoff, B. W., andKatzman, R., (eds.), Basic Neurochemistry, Little, Brown and Company, Boston.Google Scholar
  10. 10.
    Becker, D., Viljoen, D., andKramer, S. 1971. The inhibition of red cell and brain ATPase by δ-aminolaevulinic acid. Biochim. Biophys. Acta 225:26–34.PubMedGoogle Scholar
  11. 11.
    Percy, V. A., Lamm, M. C. L. andTaljaard, J. J. F. 1981. δ-Aminolaevulinic acid uptake, toxicity and effect on [14C] γ-aminobutyric acid uptake into neurons and glia in culture. J. Neurochem. 36:69–76.PubMedGoogle Scholar
  12. 12.
    Rodnight, R., andLavin, B. E. 1966. Enzyme transfer of phosphate from adenosine triphosphate to protein-bound serine residues in cerebral microsomes. Biochem. J. 101:495–501.PubMedGoogle Scholar
  13. 13.
    Shibata, Y., Ohzeki, H., Sato, M., Suzuki, Y., andTakiguchi, H. 1982. Inhibitory effect of prostaglandin A2 on Na+, K+-ATPase activity in synaptic plasma membrane of rat brain in vitro. Int. J. Biochem. 14:347–350.PubMedGoogle Scholar
  14. 14.
    Hems, D. A., andRodnight, R. 1966. Properties of phosphate bound to cerebral microsomes during adenosine-triphosphatase activity. Biochem. J. 101:516–523.PubMedGoogle Scholar
  15. 15.
    Rodnight, R., Hems, D. A., andLavin, B. E. 1966. Phosphate binding by cerebral microsomes in relation to adenosine-triphosphatase activity. Biochem. J. 101:502–515.PubMedGoogle Scholar
  16. 16.
    Ledig, M., Ciesielski-Treska, Cam, Y., Montagnon, D., andMandel, P. 1975. ATPase activity of neuroblastoma cells in culture. J. Neurochem. 25:635–640.PubMedGoogle Scholar
  17. 17.
    Elkouby, A., Ledig, M., andMandel, P. 1982. Effect of hydrocortisone and thyroxine on ATPase activities of neuronal and glial cell lines in culture. Neurochem. Res. 7:387–397.PubMedGoogle Scholar
  18. 18.
    Dichter, H. N., Taddeini, L., Lin, S., andAyala, G. F. 1977. Delta-aminolaevulinic acid. Effect of a porphyrin precursor on an isolated neuronal preparation. Brain Res. 126:189–195.PubMedGoogle Scholar
  19. 19.
    Lieberman, E. M., andNosek, T. M. 1976. The influence of chloride on the ouabainsensitive membrane potential and conductance of crayfish giant axons. Pflügers Archiv. Eur. J. Physiol. 366:195–202.Google Scholar
  20. 20.
    Cutler, M. G., Moore, M. R., andDick, J. M. 1980. Effects of δ-aminolaevulinic acid on contractile activity of rabbit duodenum. Eur. J. Pharmacol. 64:221–230.PubMedGoogle Scholar
  21. 21.
    Reyneke, L., McCarthy, B. W., Neethling, A. C., Russell, V. A., andTaljaard, J. J. F. 1983. Inhibition of the evoked release of dopamine from rat striatal synaptosomes by δ-aminolaevulinic acid. S. Afr. J. Sci. 79:249–250.Google Scholar
  22. 22.
    Fischer, H. G., Rudolph, E., andSchmidt, J. 1982. Relation between Na+, K+-ATPase activity and dopamine release from rat striatum slices. Acta Biol. Med. Ger. 41:471–476.PubMedGoogle Scholar
  23. 23.
    McIlwain, H., andBachelard, H. S. (eds.) 1971. Biochemistry and the Central Nervous System. Pages 32–60. Churchill Livingstone, Edinburgh and London.Google Scholar
  24. 24.
    Moe, G. K., andFarah, A. E. 1975. Digitalis and allied cardiac glycosides. Pages 653–682,in Goodman, L. S., andGilman, A. (eds.), The pharmacological basis of therapeutics, Macmillan Publishing Co., New York.Google Scholar

Copyright information

© Planum Publishing Corporation 1983

Authors and Affiliations

  • V. A. Russell
    • 1
  • M. C. L. Lamm
    • 1
  • J. J. F. Taljaard
    • 1
  1. 1.MRC Neurochemistry Research Group Department of Chemical PathologyUniversity of StellenboschTygerbergSouth Africa

Personalised recommendations