Neurochemical Research

, Volume 14, Issue 8, pp 761–764 | Cite as

Modulation of ATPase activities in the central nervous system by the S-100 proteins

  • Armen Simonian
  • Jacques Baudier
  • Kenneth G. Haglid
Original Articles


The isomeric forms of bovine S-100a and S-100b have been shown to stimulate ATPase activities in fractions enriched in myelin and mitochondria isolated from the Gerbil brain and for S-100b more effectively than for calmodulin in erythrocytes or skeletal muscle. In the presence of Ca2+, S-100a produced a slight increase of ATPase activity in the mitochondrial fraction. However, S-100b, with or without Ca2+ and Zn2+ respectively, had no effect on the ATPase activity in mitochondria of the Gerbil liver. The observations may indicate a “second messenger” role for S-100b in the presence of Zn2+ in the Schwann cell.

Key Words

S-100a S-100b Ca2+ Zn2+ ATPase myelin synaptosome Gerbil brain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore, B. W. 1965. A soluble protein characteristic of the nervous system. Biochem. Biophys. Res. Commun. 19:793–744.Google Scholar
  2. 2.
    Isobe, T., Nakajima, G., and Okuyama, T. 1977 Reinvestigation of extremely acidic proteins ia bovine brain. Biochem. Biophys. Acta 494:222–231.PubMedGoogle Scholar
  3. 3.
    Kretzinger, R. H. 1977. Evolution of the informational role of calcium in ekuaryotes. In: Calcium-binding Protein and Calcium Function, eds. R. Wasserman et al., N.Y., Elsevier, pp. 63–72.Google Scholar
  4. 4.
    Calissano, P., Moore, B. W., and Friesen, A. 1969. Effect of calcium ion on S-100, a protein of the nervous system. Biochemistry 8:4318–4326.PubMedGoogle Scholar
  5. 5.
    Baudier, J., and Gérard, D. 1983. Ion-binding to S-100 protein: Structural changes induced by calcium and zinc on S-100a and S-100b proteins. Biochemistry 22:3360–3369.PubMedGoogle Scholar
  6. 6.
    Baudier, J., Holtzcherer, Ch., and Gérard, D. 1982. Zinc-dependent affinity chromatography of the S-100b protein on phenyl Sepharose. A rapid purification method. FEBS Lett. 148, 2:231–234.PubMedGoogle Scholar
  7. 7.
    Deinum, J., Baudier, J., Briving, C., Rosengren, L., Wallin, M., Gérard, D., and Haglid, K. 1983. The effect of S-100a and S-100b proteins and Zn2+ on the assembly of brain microtubule proteinsin vitro FEBS Lett. 163, 2:287–291.PubMedGoogle Scholar
  8. 8.
    Patell, J., and Marangos, P. J. 1982. Modulation of brain protein phosphorylation by the S-100 protein. Biochem. Biophys. Res. Commun. 109, 4:1089–1093.PubMedGoogle Scholar
  9. 9.
    Guerini, D., Krebs, J., and Carafoli, E. 1984. Stimulation of the purified erythrocyte Ca2+-ATPase by tryptic fragments of calmodulin. J. Biol. Chem. 259, 24:15172–15177.PubMedGoogle Scholar
  10. 10.
    Michala, K. M., Famulski, K., and Carafoli, E. 1984. The Ca2+-pumping ATPase in skeletal muscle sarcolemma. Calmodulin-dependence. regulation by cAMP-dependent phosphohrylation and purification. J. Biol. Chem. 259, 24:15540–15547.PubMedGoogle Scholar
  11. 11.
    Baudier, J., Mandel, P. G., and Gérard, D. 1983. Bovine brain S-100 proteins: separation and characterization of a new S-100 protein species. J. Neurochem. 40:145–152.PubMedGoogle Scholar
  12. 12.
    Whittaker, V. P. 1963. In: Methods Separation of Subcellular Struct. Components. Univ. Press, Cambridge, pp 109–126.Google Scholar
  13. 13.
    Simonian, A. A., Stepanian, R. A. and Voskanian, L. 1978. The intracellular localization of ATPase in hens brain during ontogenetic development. Biol. J. Armenii, Vol. 31, 11:1181–1186.Google Scholar
  14. 14.
    Skulachev, V. P. 1962. The correlation of oxidation and phosphorylation in respiratory chain. Monography, published by Acad. Sci. USSR.Google Scholar
  15. 15.
    Lowry, O. H. and Lopez, J. A. 1946. The determination of inorganic phosphate in the presence of labile phosphate esters. J. Biol. Chem. 162:421–428.Google Scholar
  16. 16.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  17. 17.
    Haglid, K. G., Hamberger, A., Hansson, H.-A., Hydén, H., Persson, L. and Rönnbäck, L. 1976. Cellular and subcellular distribution of the S-100 protein in rabbit and rat central nervous system. J. Neurosci. Res. 2:175–191.PubMedGoogle Scholar
  18. 18.
    Nagata, Y., Ando, M., Miwa, M. and Kato, K. 1984. Effects of various forms of stimulation on the content of enolase isoenzymes and S-100 protein in superior cervical sympathetic ganglia excised from rats. J. Neurochem. 43:1205–1212.PubMedGoogle Scholar
  19. 19.
    Haiech, J., Klee, C. B. and Demaille, J. G. 1981. Effects of cations on affinity of calmodulin for calcium. Biochemistry 20:3890–3897.PubMedGoogle Scholar
  20. 20.
    Edström, A. and Mattsson, H. 1975. Small amounts of zinc stimulate rapid axonal transportin vitro. Brain Res. 86:162–167.PubMedGoogle Scholar
  21. 21.
    Molin, S.-O., Rosengren, L., Baudier, J., Hamberger, A. and Haglid, K. 1985. S-100 alpha-like immunoreactivity in tubules of rat kidney. A clue to the function of a “brain-specific” protein. J. Histochem. Cytochem. 33, 4:367–374.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Armen Simonian
    • 1
  • Jacques Baudier
    • 2
  • Kenneth G. Haglid
    • 3
  1. 1.Institute of BiochemistryAcademy of Sciences of Armenian SSRYerevanUSSR
  2. 2.Laboratoire de Physics, ERA, CNRS-551UER des Sciences PharmaceutiquesStrasbourg, CedexFrance
  3. 3.Institute of NeurobiologyUniversity of GöteborgGöteborgSweden

Personalised recommendations