Advertisement

Neurochemical Research

, Volume 8, Issue 9, pp 1185–1195 | Cite as

Effects of base exchange reaction on the Na+, K+ ATPase in rat brain microsomes

  • Hiroshi Hattori
  • Julian N. Kanfer
Original Articles

Abstract

Incorporation of ethanolamine and monomethylethanolamine into their corresponding phospholipid by the base exchange enzymes activated an Na+, K+-ATPase associated with a rat brain microsomes enriched preparation. The serine and dimethylethanolamine base exchange catalyzed incorporation reactions inhibited this particular Na+, K+-ATPase. These effects require Ca+ and several other structural analogues which are not incorporated into phospholipid were without affect on this ATPase.

Keywords

Serine Exchange Reaction Ethanolamine Structural Analogue Base Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

MME

monomethylethanolamine

DME

dimethylethanolamine

EA

ethanolamine

S

serine

C

choline

PMME

phosphatidyl-mono-methyl-ethanolamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kanfer, J. N. 1980. The base exchange enzymes and phospholipase D of mammalian tissue. Can. J. Biochem. 58:1370–1380.Google Scholar
  2. 2.
    Taki, T., andKanfer, J. N. 1978. A phospholipid serine base exchange enzyme. Biochim. Biophys. Acta 528:309–317.Google Scholar
  3. 3.
    Schatzmann, H. J. 1953. Herzglycoside als Hemmstoffe fur den aktiven Kalinm and Natrium Transport durch die Erythrocytenmembran. Helv. Physiol. Acta 11:346–354.Google Scholar
  4. 4.
    Roelofsen, B. 1981. The (non) specificity in the lipid-requirement of calcium and (sodium plus potassium) transporting adenosine triphosphatase. Life Science 29:2235–2247.Google Scholar
  5. 5.
    Saito, M., andKanfer, J. N. 1973. Solubilization and properties of a membrane-bound enzyme catalyzing a base exchange reaction. Biochem. Biophys. Res. Commun. 53:391–398.Google Scholar
  6. 6.
    Saito, M., Bourque, E., andKanfer, J. N. 1975. Studies on base exchange reactions of phospholipids in rat brain particles and a solubilized system. Arch. Biochem. biophys. 169:304–317.Google Scholar
  7. 7.
    Wallick, E. T., Dowd, S., Allen, J. C., andSchwartz, A. 1974. Characteristics of ouabagenin-Na+, K+ adenosine triphosphatase interaction. J. Pharmacol. Exp. Ther. 189:434–444.Google Scholar
  8. 8.
    Fiske, C. H. &Subbarow, Y. 1925. The colorimetric determination of phosphorus. J. Biol. Chem. 66:375–400.Google Scholar
  9. 9.
    Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem. 72:248.Google Scholar
  10. 10.
    Ohnishi, T. andKawamura, H. 1964. Role des phosphatides dane l'adenosine triphosphatase sensitive l'ouabaine localisee dane les membranes d'erythrocyte. J. Biochem. 56:377–378.Google Scholar
  11. 11.
    Kimelberg, H. K. 1976. Protein-liposome interactions and their relevance to the structure and function of cell membranes. Mol. Cell. Biochem. 10:171–190.Google Scholar
  12. 12.
    Schwartz, A., Lindenmauer, G. E., andAllen, J. C. 1975. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27:3–134.Google Scholar
  13. 13.
    Robinson, J. D., andFlashner, M. S. 1979. The Na+, K+ activated ATPase enzymatic and transport properties. Biochim. Biophys. Acta 549:145–176.Google Scholar
  14. 14.
    Medio, G. E., Hamberger, A., Sellstrom, A., andPorcellati, G. 1977. The phospholipid base-exchange system as a possible modulator of r-aminobutyric acid transport in brain cells. Neurochem. Res. 2:469–484.Google Scholar
  15. 15.
    Ruoho, A., andKyte, J. 1974. Photoaffinity labeling of the ouabain-binding site on Na+, K+ adenosine-triphosphatase. Proc. Nat'l. Acad. Sci. U.S. 71:2352–2356.Google Scholar
  16. 16.
    Buchanan, A. G., andKanfer, J. N. 1980. Topographical distribution of base exchange activities in rat brain subcellular fractions. J. Neurochem. 34:720–725.Google Scholar
  17. 17.
    Francescangeli, E., Brunetti, M., Gaiti, A., andPorcellati, G. 1977. Relationships between base-exchange in phospholipid metabolism and cyclic-AMP levels of synaptosomal membranes. Italian Journal of Biochem. 26:428–436.Google Scholar
  18. 18.
    Hirata, F., andAxelrod, J. 1980. Phospholipid methylation and biological signal transmission. Science 209:1082–1090.Google Scholar
  19. 19.
    Crews, F. T., Hirata, F., andAxelrod, J. 1980. Identification and properties of methyltransferases that synthesize phosphatidylcholine in rat brain synaptosomes. J. Neurochem. 34:1491–1498.Google Scholar
  20. 20.
    Kanfer, J. N. 1982 Contribution of substrates for phospholipid N methylation by the base exchange enzyme in rat brain microsomes. Biochem. Biophys. Res. Commun. 106:422–428.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Hiroshi Hattori
    • 1
  • Julian N. Kanfer
    • 1
  1. 1.Department of Biochemistry Faculty of MedicineThe University of ManitobaManitoba

Personalised recommendations