Skip to main content
Log in

Blood-brain barrier transport ofL-pipecolic acid in various rat brain regions

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Blood-brain barrier transport ofL-[l-14C]pipecolic acid was studied in the rat by single intracarotid injection using3H2O as a diffusible internal standard. Brain uptake index (BUI) forL-[14C]pipecolic acid (0.036 mM) was found to be 18.1, 10.5, and 12.6 for the cerebral cortex, brain stem, and cerebellum, respectively which was substantially higher than that reported for its analogL-proline in the whole brain. Influx ofL-pipecolic acid into the brain was concentration dependent and differed significantly between the cerebral cortex and the brain stem, and between the cerebral cortex and the cerebellum, but not between the brain stem and the cerebellum. Kinetic study ofL-pipecolic acid influx revealed a low- and a high-capacity uptake mechanisms. The low-capacity saturable component hasK m values ranging from 38 to 73 μM, andV max values ranging from 10 to 13 nmol/g/min for the three brain regions. The nonsaturable component has aK m of 4 mM, aV max of 200 nmol/g/min and similar diffusion constant (K d) (0.03 to 0.06 mlg−1 min−1) for all three brain regions. A possible role of the two-component brain uptake mechanism in the regulation of the neuronal function ofL-pipecolic acid was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, Y. F. 1976. Pipecolate acid pathway: The major lysine metabolic route in the rat brain. Biochem. Biophys. Res. Commun. 69:174–180.

    Google Scholar 

  2. Chang, Y. F. 1978. Lysine metabolism in the rat brain: The pipecolic acid-forming pathway. J. Neurochem. 30:347–354.

    Google Scholar 

  3. Chang, Y. F. 1978. Lysine metabolism in the rat brain: Blood-brain barrier transport, formation of pipecolic acid and human hyperpipecolatemia. J. Neurochem. 30:355–360.

    Google Scholar 

  4. Chang, Y. F. 1982. Lysine metabolism in the human and the monkey: Demonstration of pipecolic acid formation in the brain and other organs. Neurochem. Res. 7:577–588.

    Google Scholar 

  5. Chang, Y. F., andAdams, E. 1974.D-Lysine catabolic pathway inPseudomonas putida: Interrelations withL-lysine catabolism. J. Bacteriol. 117:753–764.

    Google Scholar 

  6. Chang, Y. F., Charles, A. K., andTilkin, R. B. 1982. Assay of 1094-1 and synthesis ofL-[14C] pipecolate fromDl-[14C]pipecolate. Anal. Biochem. 125:376–385.

    Google Scholar 

  7. Chang, Y. F., Hernandez, M. F., andMyslinski, N. R. 1981. Enhancement of hexobarbital-induced sleep by lysine and its metabolites. Life Sci. 28:407–413.

    Google Scholar 

  8. Charles, A. K., andChang, Y. F. 1981. Metabolism and uptake ofL-pipecolic acid by heart and brain. Life Sci. 29:947–954.

    Google Scholar 

  9. Eklof, B., Lassen, N. A., Nilson, L., Norberg, K., Sicsjo, B. K., andTorloff, P. 1974. Regional cerebral blood flow in the rat measured by the tissue sampling technique; a critical evaluation using four indicators,14C-antipyrine,14C-ethanol,3H-water and Xenon. Acta Physiol. Scand. 91:1–10.

    Google Scholar 

  10. Gatfield, P. D., Taller, E., Hinton, G. G., Wallace, A. C., Abdelnour, G. M., andHaust, M. D. 1968. Hyperpipecolatemia: A new metabolic disorder associated with neuropathy and hepatomegaly: A case study. Cand. Med. Assoc. J. 99:1215–1233.

    Google Scholar 

  11. Gjedde, A., Lockwood, A. H., Duffy, T. E., andPlum, F. 1978. Cerebral blood flow and metabolism in chronically hyperammonemic rats: Effects of an acute ammonia challenge. Ann. Neurol. 3:325–330.

    Google Scholar 

  12. Hernandez, M. F., andChang, Y. F. 1980. In vitro synthesis ofL-pipecolate fromL-lysine: Inconsistent with ∈-N-acety-L-lysine as an obligatory intermediate. Biochem. Biophys. Res. Commun. 93:762–769.

    Google Scholar 

  13. Higashino, K., Fujioka, M., andYamamura, Y. 1971. The conversion ofL-lysine to saccharopine and α-aminoadipate in mouse. Arch. Biochem. Biophys. 142:606–614.

    Google Scholar 

  14. Higashino, K., Tsukada, K., andLiberman, J. 1965. Saccharopine, a product of lysine breakdown by mammalian liver. Biochem. Biophys. Res. Commun. 20:285–290.

    Google Scholar 

  15. Hutzler, J., andDancis, J. 1968. Conversion of lysine to saccharopine by human tissues. Biochim. Biophys. Acta 158:62–69.

    Google Scholar 

  16. Hutzler, J., andDancis, J. 1975. Lysine-ketoglutarate reductase in human tissues. Biochim. Biophys. Acta 377:42–51.

    Google Scholar 

  17. Kase, Y., Tataoka, M., Miyata, T., andOkano, Y. 1973. Pipecolic acid in the dog brain. Life Sci. 13:867–873.

    Google Scholar 

  18. Kase, Y., Takahama, K., Hashimoto, T., Kaisaku, J., Okano, Y., andMiyata, T. 1980. Electrophoretic study of pipecolic acid, a biogenic imino acid, in the mammalian brain. Brain Res. 193:608–613.

    Google Scholar 

  19. Lajtha, A. 1958. Amino acids and protein metabolism of the brain-II. J. Neurochem. 2:209–215.

    Google Scholar 

  20. Lajtha, A., andToth, J. 1961. The brain barrier system-II. Uptake and transport of amino acids by the brain. J. Neurochem. 8:216–225.

    Google Scholar 

  21. Lineweaver, H., andBurk, D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56:658–666.

    Google Scholar 

  22. Miyata, T., Kamata, K., Noguchi, M., Okano, Y., andKase, Y. 1973. Pharmacological studies of alicyclic amines XV: Intracerebral administration of pipecolic acid (PA). Jap. J. Pharmac. 23 (suppl.):81.

    Google Scholar 

  23. Myslinski, N. R., Charles, A. K., andChang, Y. F. 1981. Kinetics of blood-brain transport ofL-pipecolic acid. 8th Internat. Congr. Pharmacol., Tokyo, Japan, July 19–24, 1981. Abstract 567.

  24. Nishio, H., andGiacobini, E. 1981. Brain uptake of pipecolic acid, amino acids, and amines following intracarotid injection in the mouse. Neurochem. Res. 6:835–845.

    Google Scholar 

  25. Nishio, H., Ortiz, J., andGiacobini, E. 1981. Accumulation and metabolism of pipecolic acid in the brain and other organs of the mouse. Neurochem. Res. 6:1241–1252.

    Google Scholar 

  26. Nomura, Y., Okuma, Y., andSegawa, T. 1978. Influence of piperidine and pipecolic acid on the uptake of monoamines, GABA and glycine into P2 fractions of the rat brain and the spinal cord. J. Pharm. Dyn. 1:251–255.

    Google Scholar 

  27. Nomura, Y., Okuma, Y., Segawa, T., Schmidt-Glenewinkel, T., andGiacobini, E. 1979. A calcium-dependent, high potassium-induced release of pipecolic acid from rat brain slices. J. Neurochem. 33:803–805.

    Google Scholar 

  28. Nomura, Y., Schmidt-Glenewinkel, T., andGiacobini, E. 1978. In vitro formation of piperidine, cadaverine and pipecolic acid in chick and mouse brain during development. Dev. Neurosci. 1:239–249.

    Google Scholar 

  29. Nomura, Y., Schmidt-Glenewinkel, T., andGiacobini, E. 1980. Uptake of piperidine and pipecolic acid by synaptosomes from mouse brain. Neurochem. Res. 5:1163–1173.

    Google Scholar 

  30. Okano, Y., Kataoka, M., Miyata, T., Morimoto, H., Takahama, K., Hitoshi, T., Kase, Y., Mastumoto, I., andShinka, T. 1981. Simultaneous analysis of pipecolic acid with proline in the brain by a selected ion-monitoring technique. Anal. Biochem. 117:196–202.

    Google Scholar 

  31. Oldendorf, W. H. 1970. Meausrement of brain uptake of radiolabelled substances using a tritiated water internal standard. Brain Res. 24:372–376.

    Google Scholar 

  32. Oldendorf, W. H. 1971. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Amer. J. Physiol. 221:1629–1639.

    Google Scholar 

  33. Oldendorf, W. H., andSzabo, J. 1976. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Amer. J. Physiol. 230:94–98.

    Google Scholar 

  34. Pardridge, W. M., andOldendorf, W. H. 1975. Kinetic analysis of blood-brain barrier transport of amino acids. Biochim. Biophys. Acta 401:128–136.

    Google Scholar 

  35. Payton, C. W., andChang, Y. F. 1982. 1096-1 reductase ofPseudomonas putida. J. Bacteriol. 149:864–871.

    Google Scholar 

  36. Schmidt-Glenewinkel, T., Nomura, Y., andGiacobini, E. 1977. The conversion of lysine into piperidine, cadaverine, and pipecolic acid in the brain and other organs of the mouse. Neurochem. Res. 2:619–637.

    Google Scholar 

  37. Schmidt-Glenewinkel, T., Nomura, Y., andGiacobini, E. 1978. Pipecolic acid uptake in mouse brain synaptosomes. 9th Ann. Meet. Amer. Soc. Neurochem., Washington, D.C., Abst. 135, p. 115.

  38. Spears, G., Sneyd, J. G. T., andLoten, E. G. 1971. A method for deriving kinetic constants for two enzymes acting on the same substrate. Biochem. J. 125:1149–1151.

    Google Scholar 

  39. Thomas, G. H., Haslam, R. H. A., Batshaw, M. L., Capute, A. J., Neidengard, L., andRansom, J. L. 1975. Hyperpipecolic acidemia associated with hepatomegaly, mental retardation, optic nerve dysplasia and progressive neurological disease. Clin. Genetics 8:376–382.

    Google Scholar 

  40. Woody, N. C. 1964. Hyperlysinemia. Amer. J. Dis. Child. 108:543–553.

    Google Scholar 

  41. Woody, N. C. andPupene, M. B. 1970. Excretion of pipecolic acid by infants and by patients with hyperlysinemia. Pediat. Res. 4:89–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charles, A.K., Chang, YF. & Myslinski, N.R. Blood-brain barrier transport ofL-pipecolic acid in various rat brain regions. Neurochem Res 8, 1087–1096 (1983). https://doi.org/10.1007/BF00964924

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964924

Keywords

Navigation