Skip to main content
Log in

Changes with aging in the levels of amino acids in rat CNS structural elements II. Taurine and small neutral amino acids

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Taurine (Tau) and the small neutral amino acids glycine (Gly), serine (Ser), threonine (Thr), and alanine (Ala) were measured in 53 brain areas of 3- and 29-month-old male Fisher 344 rats. The ratio of highest to lowest level was 34 for Tau, 9.1 for Thr, 7.6 for Gly and Ser, and 6.5 for Ala. The heterogeneity was found in numerous areas; for example, Tau levels were more than 90 nmol/mg protein in 6 areas, and less than 20 nmol/mg protein in 10 areas. Similar heterogeneity was found with the other amino acids. The relative distribution of the small neutral amino acids showed several similarities; Tau distribution was different. With age, four amino acids decreased in 10–18 areas, and increased in only 1–3, while Thr increased in more areas than it decreased. The five amino acids of this paper, and the four of the previous paper, are among the amino acids at highest level in the brain; the sequence in their levels shows considerable regional heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banay-Schwartz, M., Lajtha, A., and Palkovits, M. 1989. Changes with aging in the levels of amino acids in rat CNS structural elements. I. Glutamate and related amino acids. Neurochem. Res. 14:

  2. Palkovits, M. 1973. Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res. 59:449–450.

    PubMed  Google Scholar 

  3. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  4. Neidle, A., Banay-Schwartz, M., Sacks, S., and Dunlop, D.S. 1989. Amino acid analysis using 1-naphthylisocyanate as a precolumn HPLC derivatization reagent. Anal. Biochem. (in press).

  5. Perry, T. L. 1982. Cerebral amino acid pools. Pages 33–52,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 1, Plenum Publishing Corp., New York.

    Google Scholar 

  6. Himwich, W. A., and Agrawal, H. C. 1969. Amino acids. Pages 33–52, in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 1, Plenum Publishing Corp., New York.

    Google Scholar 

  7. Levi, G., Kandera, J., and Lajtha, A. 1967. Control of cerebral metabolism levels — I. Amino acid uptake and levels in various species. Arch. Biochem. Biophys. 119:303–311.

    PubMed  Google Scholar 

  8. Kandera, J., Levi, G., and Lajtha, A. 1968. Control of cerebral metabolite levels — II. Amino acid uptake and levels in various areas of the rat brain. Arch. Biochem. Biophys. 126:249–260.

    PubMed  Google Scholar 

  9. Shaw, R. K., and Heine, J. D. 1965. Effect of insulin on nitrogenous constituents of rat brain. J. Neurochem. 12:527–532.

    PubMed  Google Scholar 

  10. Hikal, A. H., Lipe, G. W., Slikker, W. Jr., Scallet, A. C., Ali, S. F., and Newport, G. D. 1988. Determination of amino acids in different regions of the rat brain. Application to the acute effects of tetrahydrocannabinol (THC) and trimethyltin (TMT). Life Sci. 42:2029–2035.

    PubMed  Google Scholar 

  11. Lombardini, J. B. 1976. Regional and subcellular studies on taurine in the rat central nervous system. Pages 311–326,in Huxtable, R., and Barbeau, A. (eds.), Taurine, Raven Press, New York.

    Google Scholar 

  12. Ellison, D. W., Beal, M. F., and Martin, J. B. 1987. Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electrochemical detection. J. Neurosci. Meth. 19:305–315.

    Google Scholar 

  13. Palkovits, M., Elekes, I., Lang, T., and Patthy, A. 1986. Taurine levels in discrete brain nuclei of rats. J. Neurochem. 47:1333–1335.

    PubMed  Google Scholar 

  14. Elekes, I., Patthy, A., Lang, T., and Palkovits, M. 1986. Concentrations of GABA and glycine in discrete brain nuclei. Neuropharmacology 25:703–709.

    PubMed  Google Scholar 

  15. Patrick, J. T., McBride, W. J., and Felten, D. L. 1983. Distribution of glycine, GABA, aspartate and glutamate in the rat spinal cord. Brain Res. Bull. 10:415–418.

    PubMed  Google Scholar 

  16. van Gelder, N. M. 1978. Taurine, the compartmentalized metabolism of glutamic acid, and the epilepsies. Can. J. Physiol. Pharmacol. 56:362–374.

    PubMed  Google Scholar 

  17. Taurine: Biological Actions and Clinical Perspectives 1985.in Oja, S. S., Ahtee, L., Kontro, P., and Paasonen, M. K. (eds.), Progress in Clinical and Biological Research, Vol. 179, Alan R. Liss, Inc., New York.

    Google Scholar 

  18. Deutsch, S. I., Peselow, E. D., Banay-Schwartz, M., Gershon, S., Virgilio, J., Fieve, R. R., and Rotrosen, J. 1981. Effect of lithium on glycine levels in patients with affective disorders. Am. J. Psychiat. 138:683–684.

    PubMed  Google Scholar 

  19. Korpi, E. R., and Wyatt, R. J. 1983. Effects of chronic D-amphetamine and phenylethylamine on the concentrations of neurotransmitter amino acids in the rat brain. Int. J. Neurosci. 18:239–246.

    PubMed  Google Scholar 

  20. McBride, W. J., Aprison, M. H., and Kusano, K. 1976. Contenis of several amino acids in the cerebellum, brain stem and cerebrum of the “staggerer’, ‘weaver’ and ‘nervous’ neurologically mutant mice. J. Neurochem. 26:867–870.

    PubMed  Google Scholar 

  21. Sasaki, H., Muramoto, O., Kanazawa, I., Arai, H., Kosaka, K., and Iizuka, R. 1986. Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of the Alzheimer type. Ann. Neurol. 19:263–269.

    PubMed  Google Scholar 

  22. Seiler, N., and Lajtha, A. 1987. Functions of GABA in the vertebrate organisms. Pages 1–56,in Neurotrophic Activity of GABA During Development. Alan R. Liss, Inc., New York.

    Google Scholar 

  23. Allen, I. C., Schousboe, A., and Griffiths, R. 1986. Effects of L-homocysteine and derivatives on the high-affinity uptake of taurine and GABA into synaptosomes and cultured neurons and astrocytes. Neurochem. Res. 11:1487–1496.

    PubMed  Google Scholar 

  24. Holopainen, I., Malminen, O., and Kontro, P. 1987. Sodium-dependent high-affinity uptake of taurine in cultured cerebellar granule cells and astrocytes. J. Neurosci. Res. 18:479–483.

    PubMed  Google Scholar 

  25. Cupello, A., and Hydén, H. 1986. γ-Aminobutyric acid (GABA) removal from the synaptic clef: A postsynaptic event? Cell. Mol. Neurobiol. 6:1–16.

    PubMed  Google Scholar 

  26. Fonnum, F., and Fykse, E-M. 1988. Transmitter amino acid uptake into synaptic vesicles. Trans. Amer. Soc. Neurochem. 19:199.

    Google Scholar 

  27. Kish, P. E., Fischer-Bovenkerk, C., and Ueda, T. 1988. Glycine uptake into synaptic vesicles. Trans. Amer. Soc. Neurochem. 19:202.

    Google Scholar 

  28. Wood, J. D., and Kurylo, E. 1984. Amino acid content of nerve endings (synaptosomes) in different regions of brain: effects of GABAculine and isonicotinic acid hydrazide. J. Neurochem. 42:420–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banay-Schwartz, M., Lajtha, A. & Palkovits, M. Changes with aging in the levels of amino acids in rat CNS structural elements II. Taurine and small neutral amino acids. Neurochem Res 14, 563–570 (1989). https://doi.org/10.1007/BF00964919

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964919

Key Words

Navigation