Skip to main content
Log in

The subcellular fractionation of the bovine caudate nucleus

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Two synaptosomal fractions could be obtained from bovine caudate nucleus on sucrose density gradients one of which had a much greater capacity for ‘high affinity’ choline uptake than the other but comparable amounts of CAT and choline kinase activity. Specific binding of QNB was widely distributed among all the subcellular fractions except the mitochondrial fraction and in quantitative terms by far the greatest amount was in the microsomal fraction. Only the microsomal fraction contained measurable amounts of glycerophosphocholine phosphodiesterase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheney, D. L., LeFevre, H. F., andRagagni, G. 1975. Choline acetyltransferase activity and mass fragmentation measurement of acetylcholine in specific nuclei and tracts of rat brain. Neuropharmacology 14:801–809.

    Google Scholar 

  2. Wastek, G. J., Stern, L. Z., Johnson, P. C., andYamamura, H. I. 1976. Huntington's disease: regional alteration in muscarinic cholinergic receptor binding in human brain. Life Sci. 19:1033–1040.

    Google Scholar 

  3. Hiley, C. R., andBurgen, A. S. V. 1974. The distribution of muscarinic receptor sites in the nervous system of the dog. J. Neurochem. 22:159–162.

    Google Scholar 

  4. Laverty, R., Michaelson, I. A., Sharman, D. F., andWhittaker, V. P. 1963. The subcellular localisation of dopamine and acetylcholine in the dog caudate nucleus. Brit. J. Pharmacol. 21:482–490.

    Google Scholar 

  5. Hickey, S. M., Ansell, G. B., Mitchell, K., andPearce, G. W. 1976. Subcellular fractions of normal human substantia nigra and caudate nucleus: a study of their morphology and some enzymes including glutamic decarboxylase and choline acetyltransferase. J. Neurochem. 27:957–962.

    Google Scholar 

  6. Bajgar, J., Patocka, J., Ornst, F., Žižkovský, V., andLacina, P. 1971. Subcellular distribution of acetylcholinesterase activity in human brain caudate nucleus. J. Neurochem. 18:529–530.

    Google Scholar 

  7. Gray, E. G., andWhittaker, V. P. 1962. Isolation of nerve endings from brain: an electron microscope study of cell fragments. J. Anat. 96:79–88.

    Google Scholar 

  8. DeRobertis, E., Pellegrino, de Iraldi, A., Rodriguez, de Lores Arnaiz, G. andSalganicoff, L. 1962. Cholinergic and non-cholinergic nerve endings rat brain. 1. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J. Neurochem. 9:23–35.

    Google Scholar 

  9. Gregg, M. R., Spanner, S., andAnsell, G. B. 1977. The binding of a specific muscarinic antagonist to subcellular fractions of the bovine caudate nucleus. Biochem. Soc. Trans. 5:182–184.

    Google Scholar 

  10. Yamamura, H. I. andSnyder, S. H. 1974. Muscarinic cholinergic binding in rat brain. Proc. Natl. Acad. Sci. 71:1725–1729.

    Google Scholar 

  11. Bull, G., andOderfeld-Novak, B. 1971. Standardisation of a radiochemical assay of choline acetyltransferase and a study of the activation of the enzyme in the rabbit brain. J. Neurochem. 18:936–941.

    Google Scholar 

  12. Fonnum, F. 1969. Isolation of choline esters from aqueous solutions by extraction with sodium tetraphenylboron in organic solvents. Biochem. J. 113:291–298.

    Google Scholar 

  13. Fonnum, F. 1969. Radiochemical micro assays for the determination of choline acetyltransferase and acetylcholinesterase activities. Biochem. J. 115:465–472.

    Google Scholar 

  14. Simon, J. R., Atweh, S., andKuhar, M. J. 1976. Sodium-dependent high affinity choline uptake. A regulatory step in the synthesis of acetylcholine. J. Neurochem. 26:909–922.

    Google Scholar 

  15. Spanner, S., andAnsell, G. B. 1979. Choline kinase and ethanolamine kinase activity in the cytosol of nerve endings from rat forebrain. Biochem. J. 178:753–760.

    Google Scholar 

  16. Ansell, G. B., andSpanner, S. 1981. The activity of glycerophosphocholine phosphodiesterase in brain tissue. Pages 393–403,in Pepeu, G. andLadinsky, H. (ed.), Advances in Behavioural biology 25: Plenum Press, N. Y.

    Google Scholar 

  17. Weichselbaum, T. E. 1946. An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma. Am. J. Clin. Path. 16: suppl. P40.

    Google Scholar 

  18. Ellman, G. L., Courtney, D. K., Andres, V., andFeatherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Google Scholar 

  19. Porteus, J. W., andClark, B. 1965. The isolation and characterisation of subcellular components of the epithelial cells of rabbit small intestine. Biochem. J. 96:159–171.

    Google Scholar 

  20. Michell, R. H., andHawthorne, J. N. 1965. The site of diphosphoinositide synthesis in rat liver. Biochem. Biophys. Res. Commun. 21:333–338.

    Google Scholar 

  21. Hökfelt, T., Jonsson, G., andLidbrink, P. 1970. Electron microscopic identification of monoamine nerve ending particles in rat brain homogenates. Brain Res. 22:147–151.

    Google Scholar 

  22. Cotman, C. W., andMatthews, D. A. 1971. Synaptic plasma membranes from rat brain synaptsomes: isolation and partial characterisation. Biochim. Biophys. Acta. 249:380–394.

    Google Scholar 

  23. Lapetina, E. G., Soto, E. F., andde Robertis, E. 1967. Gangliosides and acetylcholinesterase in isolated membranes of the rat brain cortex. Biochim. Biophys. Acta. 135:33–43.

    Google Scholar 

  24. Lehmann, J., andFibiger, H. C. 1978. Acetylcholinesterase in the substantia nigra and caudate-putamen of the rat: properties and localisation in dopaminergic neurones. J. Neurochem. 30:615–624.

    Google Scholar 

  25. Silver, A. 1974. Subcellular localisation, synthesis and transport of acetylcholinesterase. Pages 99–131,in Neuberger, A. andTatum, E. L. (ed.), The Biology of Cholinesterases. Frontiers of Biology Vol 36, North Holland Publ. Co. Amsterdam.

    Google Scholar 

  26. Steck, T. L., andWallach, O. F. H. 1970. The isolation of plasma membranes. Pages 93–153,in Busch, H. (ed.), Methods in Cancer Research Vol. 5, Academic Press, N. Y.

    Google Scholar 

  27. Bernstein, H. G., Weiss, J., andLuppa, H. 1973. Cytochemical investigations on the localisation of 5′nucleotidase in the rat hippocampus with specific reference to synaptic regions. Histochemistry 55:261–267.

    Google Scholar 

  28. Farrow, J. T. andO'Brien, R. D. 1973. Binding of atropine and muscarine to rat brain fractions and its relation to the acetylcholine receptor. Mol. Pharmacol. 9:33–40.

    Google Scholar 

  29. Ben-Barak, J., andDudai, Y. 1980. Scopolamine induces an increase in muscarinic receptor level in rat hippocampus. Brain Res. 193:309–313.

    Google Scholar 

  30. Fonnum, F. 1968. Choline acetyltransferase binding to and release from membranes. Biochem. J. 109:389–398.

    Google Scholar 

  31. Yamamura, H. I., andSnyder, S. H. 1973. High affinity transport of choline into synaptosomes of rat brain. J. Neurochem. 21:1355–1374.

    Google Scholar 

  32. Sorimachi, M., andKataoka, K. 1974. Choline uptake by nerve terminals: A sensitive and specific marker of cholinergic innervation. Brain Res. 72:350–353.

    Google Scholar 

  33. Kuhar, M. J., Haven, R. M. de, Yamamura, H. I., Rommelspracher, H., andSimon, J. R. 1975. Further evidence for cholinergic habenulo interpeduncular neurones. Pharmacological and functional characteristics. Brain Res. 97:265–275.

    Google Scholar 

  34. Wheeler, D. D. 1979. A model of high affinity choline transport in rat cortical synaptosomes. J. Neurochem. 32:1197–1213.

    Google Scholar 

  35. Atweh, S., Simon, J. R. andKuhar, M. J. 1975. Utilization of sodium-dependent high affinity choline uptake in vitro as a measure of the activity of cholinergic neurones in vivo. Life Sci. 17:1535–1544.

    Google Scholar 

  36. Gregg, M. R., Spanner, S., andAnsell, G. B. 1981. Muscarinic receptor binding sites in the synaptosomal and microsomal fractions of bovine caudate nucleus. Biochem. Soc. Trans. 9:416–417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Dr. Derek Richter on his seventy-fifth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregg, M.R., Spanner, S. & Ansell, G.B. The subcellular fractionation of the bovine caudate nucleus. Neurochem Res 7, 1045–1058 (1982). https://doi.org/10.1007/BF00964885

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964885

Keywords

Navigation