Neurochemical Research

, Volume 6, Issue 2, pp 203–211 | Cite as

Increased phosphorylation in vitro of a cytosolic polypeptide resolved from denervated skeletal muscle

  • Stephen P. Squinto
  • Jerry A. McLane
  • Irene R. Held
Original Articles


The in vitro phosphorylation of a 40,400-dalton, cytosolic polypeptide from the soleus muscle of the rat is increased twofold within 24 hr after cutting the motor nerve fibers to this muscle. This involves an ATP:phosphotransferase reaction which we have reported to be inhibited by a specific cyclic AMP-dependent protein kinase inhibitor. The phosphorylated polypeptide does not electrophoretically comigrate on SDS-polyacrylamide gels with the 38,000-dalton catalytic subunit of cyclic AMP-dependent protein kinase which is known to undergo a site-specific autophosphorylation in skeletal muscle.


Skeletal Muscle Protein Kinase Polypeptide Nerve Fiber Kinase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris, A. J. 1974. Inductive functions of the nervous system. Annu. Rev. Physiol. 36:251–305.Google Scholar
  2. 2.
    Drachman, D. B. 1974. Trophic functions of the neuron. Ann. N.Y. Acad. Sci. 183:158–170.Google Scholar
  3. 3.
    Gutmann, E. 1976. Neurotrophic relations. Annu. Rev. Physiol. 38:177–216.Google Scholar
  4. 4.
    Lentz, T. L. 1972. A role of cyclic AMP in a neurotrophic process. Nature 238:154–155.Google Scholar
  5. 5.
    Carlsen, R. C. 1975. The possible role of cAMP in the neurotrophic control of skeletal muscle. J. Physiol. 247:343–361.Google Scholar
  6. 6.
    Festoff, B. W., andOh, T. J. 1977. Neurotrophic control of cyclic nucleotide levels during muscle differentiation in cell culture. J. Neurobiol. 8:57–65.Google Scholar
  7. 7.
    McLane, J. A., andOhld, I. R. 1979. Alterations in cyclic nucleotide metabolism after denervation of skeletal muscles. Proc. Int. Soc. Neurochem. 7:478.Google Scholar
  8. 8.
    Greengard, P. 1978. Phosphorylated proteins as physiological effectors. Science 199:146–152.Google Scholar
  9. 9.
    Krebs, E. G., andBeavo, J. A. 1979. Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem. 48:923–959.Google Scholar
  10. 10.
    Squinto, S. P., McLane, J. A., andHeld, I. R. 1980. Effect of denervation on the endogenous phosphorylating activity in the cytosol of rat skeletal muscle. Neurosci. Lett. 20:295–300.Google Scholar
  11. 11.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  12. 12.
    Weber, K., andOsborn, M. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244:4406–4412.Google Scholar
  13. 13.
    Ashby, C. D., andWalsh, D. A. 1972. Characterization of the interaction of a protein kinase inhibitor with adenosine 3′,5′-monophosphate-dependent protein kinases. I. Interaction with the catalytic subunit of the protein kinase. J. Biol. Chem. 247:6637–6642.Google Scholar
  14. 14.
    Demaille, J. G., Peters, K. A., andFischer, E. H. 1977. Isolation and properties of the rabbit skeletal muscle protein inhibitor of adenosine 3′,5′-monophosphate-dependent protein kinases. Biochemistry 16:3080–3086.Google Scholar
  15. 15.
    Szmigielski, A., Guidotti, A., andCosta, E. 1977. Endogenous protein kinase inhibitors. J. Biol. Chem. 252:3848–3853.Google Scholar
  16. 16.
    Kinzel, V., andKubler, D. 1976. Single step purification of the catalytic subunit(s) of cyclic 3′,5′-adenosine monophosphate-dependent protein kinase(s) from rat muscle. Biochem. Biophys. Res. Commun. 71:257–264.Google Scholar
  17. 17.
    Bechtel, P. J., Beavo, J. A., andKrebs, E. G. 1977. Purification and characterization of catalytic subunit of skeletal muscle adenosine 3′,5′-monophosphate-dependent protein kinase. J. Biol. Chem. 252:2691–2697.Google Scholar
  18. 18.
    Chiu, Y. S., andTao, M. 1978. Autophosphorylation of rabbit skeletal muscle cyclic AMP-dependent protein kinase I catalytic subunit. J. Biol. Chem. 253:7145–7148.Google Scholar
  19. 19.
    Hoffmann, F., Beavo, J. A., Bechtel, P. J., andKrebs, E. G. 1975. Comparison of adenosine 3′,5′-monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle. J. Biol. Chem. 250:7795–7801.Google Scholar
  20. 20.
    Zoller, M. J., Kerlavage A. R. andTaylor, S. S. 1979. Structural comparisons of cAMP-dependent protein kinases I and II from porcine skeletal muscle. J. Biol. Chem. 254:2408–2412.Google Scholar
  21. 21.
    Rosen, O. M., andErlichman, J. 1975. Reversible autophosphorylation of a cyclic 3′,5′-AMP-dependent protein kinase from bovine cardiac muscle. J. Biol. Chem. 250:7788–7794.Google Scholar
  22. 22.
    Glass, D. B., andKrebs, E. G. 1980. Protein phosphorylation catalyzed by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Annu. Rev. Pharmacol. Toxicol. 20:363–388.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Stephen P. Squinto
    • 1
    • 2
  • Jerry A. McLane
    • 1
    • 2
  • Irene R. Held
    • 1
    • 2
  1. 1.Neuroscience Research ProgramVeterans Adminitration HospitalHines
  2. 2.Departments of Biochemistry and PharmacologyLoyola University Stritch School of MedicineMaywood

Personalised recommendations