Skip to main content
Log in

Lipid peroxidation as the mechanism of modification of the affinity of the Na+, K+-ATPase active sites for ATP, K+, Na+, and strophanthidin in vitro

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of lipid peroxidation on the affinity of specific active sites of Na+, K+-ATPase for ATP (substrate), K+ and Na+ (activators), and strophanthidin (a specific inhibitor) was investigated. Brain cell membranes were peroxidized in vitro in the presence of 100μM ascorbate and 25μM FeCl2 at 37°C for time intervals from 0–20 min. The level of thiobarbituric acid reactive substances and the activity of Na+, K+-ATPase were determined. The enzyme activity decreased by 80% in the first min. from 42.0±3.8 to 8.8±0.9 μmol Pi/mg protein/hr and remained unchanged thereafter. Lipid peroxidation products increased to a steady state level from 0.2±0.1 to 16.5 ±1.5 nmol malonaldehyde/mg protein by 3 min. In peroxidized membranes, the affinity for ATP and strophanthidin was increased (two and seven fold, respectively), whereas affinity for K+ and Na+ was decreased (to one tenth and one seventh of control values, respectively). Changes in the affinity of active sites will affect the phosphorylation and dephosphorylation mechanisms of Na+, K+-ATPase reaction. The increased affinity for ATP favors the phosphorylation of the enzyme at low ATP concentrations whereas, the decreased affinity for K+ will not favor the dephosphorylation of the enzyme-P complex resulting in unavailability of energy for transmembrane transport processes. The results demonstrate that lipid peroxidation alters Na+, K+-ATPase function by modification at specific active sites in a selective manner, rather than through a non-specific destructive process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halliwell, B. 1978. Biochemical mechanisms accounting for the action of oxygen of living organisms: The key role of superoxide dismutase. Cell. Biol. Int. Rep. 2:113–128.

    PubMed  Google Scholar 

  2. Hauggard, N. 1968. Cellular mechanisms of oxygen toxicity. 48:311–372.

  3. Tappel, A. L. 1974. Lipid peroxidation damage to cell components. Fed. Proc. 32:1870–1874.

    Google Scholar 

  4. Sun, G. Y., and Sun, A. Y. 1974. Synaptosomal plasma membranes: acyl group composition of phosphoglycerides and Na+,K+-ATPase activity during fatty acid deficiency. J. Neurochem. 22:15–18.

    PubMed  Google Scholar 

  5. Tappel, A. L. 1978. Protection against free radical lipid peroxidation reactions. Adv. Exp. Med. 97:111–131.

    Google Scholar 

  6. Harman, D. 1983. Free radical theory of ageing: consequences of mitochondrial ageing. Age. 6:86–94.

    Google Scholar 

  7. Imaizumi, S., Kayama, T., and Suzuki, J. 1984. Chemiluminescence in hypoxic brain—the first report. Correlation between energy metabolism and free radical reaction. Stroke. 15:1061–1065.

    PubMed  Google Scholar 

  8. Suzuki, J., Imaizumi, S., Kayama, T., and Yoshimoto, T. 1985. Chemiluminescence in hypoxic brain—the second report: Cerebral protective effect of mannitol, vitamin E and glucocorticoid. Stroke. 16:695–700.

    PubMed  Google Scholar 

  9. Mishra, O. P., and Delivoria-Papadopoulos, M. 1988. Na+,K+-ATPase in developing fetal guinea pig brain and the effect of meternal hypoxia. Neurochem. Res. 13:765–770.

    PubMed  Google Scholar 

  10. Mishra, O. P., and Delivoria-Papadopoulos, M. 1989. Lipid peroxidation in developing fetal guinea pig brain during normoxia and hypoxia. Dev. Brain Res. 45:129–135.

    Google Scholar 

  11. Kogure, K., Watson, B. D., Busto, R., and Abe, K. 1982. Potentiation of lipid peroxides by ischemia in rat brain. Neurochem. Res. 7:437–454.

    PubMed  Google Scholar 

  12. Smith, D. S. 1986. Barbiturates as free radical scavengers and protective agents in brain ischemia. pages 457–480,in J. E. Johnson (ed.), Free Radicals, Aging and Degenerative Diseases, Alan R. Liss.

  13. Mishra, O. P., Wagerle, L. C., Cahillane, G., and Delivoria-Papadopoulos, M. 1988. Na+, K+-ATPase affinity response of the fetal guinea pig brain to maternal hypoxia. Pediatr. Res. 23(4):248A.

    Google Scholar 

  14. Mishra, O. P., Delivoria-Papadopoulos, M., Cahillane, G., Roth, R., Gwiazdowski, S, and Wagerle, L. C. 1989. Modifications of Na+,K+-ATPase sites for K+, Na+ and strophanthidin following brain tissue hypoxia in newborn piglets. Pediatr. Res.

  15. Harik, S. I., Doul, G. H., and Dick, A. P. K. 1985. Specific ouabain binding t brain microvessels and choroid plexus. J. Cereb. Blood Flow Metab. 5:156–160.

    PubMed  Google Scholar 

  16. Mishra, O. P., Wagerle, L. C., and Delivoria-Papadopoulos, M.: 1988. 5′-nucleotidase and adenosine deaminase in developing fetal guinea pig brain and the effect of maternal hypoxia. Neurochem. Res. 13(11):1055–1060.

    PubMed  Google Scholar 

  17. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randal, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. chem. 193:265–275.

    PubMed  Google Scholar 

  18. Schaefer, A., Komlos, M., and Seregi, A. 1975. Lipid peroxidation as the cause of the ascorbic acid induced decreased of adenosine triphosphate activities of rat brain microsomes and its inhibition by biogenic amines and psychotropic drugs. Biochem. Pharmacol. 24:1781–1786.

    PubMed  Google Scholar 

  19. Kovachich, G. B., and Mishra, O. P. 1981. Partial inactivation of Na+,K+-ATPase in cortical brain slices incubated in normal Krebs-Ringer phosphate medium at 1 and 10 atm oxygen pressures. J. Neurochem. 36:333–335.

    PubMed  Google Scholar 

  20. Sun, A. Y. 1972. The effect of lipid peroxidation on synaptosomal (Na+,K+)-ATPase isolated from the cerebral cortex of squirrel monkey. Biochim. Biophys. Acta. 266:350–360.

    PubMed  Google Scholar 

  21. Hexum, T. D., and Fried, R. 1979. Effect of superoxide radicals on (Na+K) tansport adenosine triphosphatase and protection by superoxide dismutase. Neurochem. Res. 4:73–92.

    PubMed  Google Scholar 

  22. Logan, J. G. 1980. The extrusion of sodium ions from presynaptic ending of rat cerebral cortex. J. Neurochem. 35:349–353.

    PubMed  Google Scholar 

  23. Erecinska, M. 1989. Stimulation of the Na+/K+ pump activity during electrogenic uptake of acidic amino acid transmitters by rat brain synaptosomes. J. Neurochem. 52:135–139.

    PubMed  Google Scholar 

  24. Glynn, I. M. 1964. The action of cardiac glycosides on ion movements. Pharmacol. Rev. 16:381–407.

    PubMed  Google Scholar 

  25. Sweadner, K. J. 1979. Two molecular forms of (Na+K+)-stimulated ATPase in brain: separation and difference in affinity for strophanthidin. J. Biol. Chem. 254:6060–6067.

    PubMed  Google Scholar 

  26. Hauger, R., Luu, M. D., Meyer, D. K., Goodwin, F. K., and Paul, S. M. 1985. Characterization of “High Affinity” (3H) ouabain binding in the rat central nervous system. J. Neurochem. 44:1709–1715.

    PubMed  Google Scholar 

  27. Ovchinnikov, Y. A., Ozhandzhugazyan, K. N., Lutsenko, S. V., Mustayev, A. A., Modysanov, N. N., and Dzhandzugazyan, K. N. 1987. Affinity modification of E1-form of Na+, K+-ATPase revealed Asp-710 in the catalytic site. Febs. Lett. 14:221(2):4331.

    Google Scholar 

  28. Aiegelhoffer, A., Breier, A., Monosikova, R., and Ozurba, A. 1987. Some properties of the active site and cation binding site of the heart sarcolemmal (Na++K+)-ATPase. Biomed. Biochem. Acta. 46(8–9):S553-S556.

    Google Scholar 

  29. Goldberg, W. J., Watson, B. D., Busto, R., Kurchner, H., Santiso, M., and Ginsburg, M. D. 1984. Concurrent measurement of (Na+, K+)-ATPase activity and lipid peroxides in rat brain following reversible global ischemia. Neurochem. Res. 9:1737–1747.

    PubMed  Google Scholar 

  30. Halliwell, B., and Grutteridge, J. M. C. 1985. Free Radicals in Biology and Medicine. Clarendon Press, Oxford.

    Google Scholar 

  31. Dexter, D. T., Cavter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., and Marsden, C. D. 1989. Basal lipid peroxidation in substantia nigra is increased in Parkinson's Disease. J. Neurochem. 52:381–389.

    PubMed  Google Scholar 

  32. Sweadner, K. J. and Gilkeson, R. C. 1985. Enzymatic properties of separated isozymes of the Na, K-ATPase: Substrate affinities, kinetic cooperativity, and ion transport stoichiometry. J. Biol. Chem. 260:9016–90022.

    PubMed  Google Scholar 

  33. Grisar, T. 1984. Glial and neuronal Na+, K+-pump in epilepsy. Ann. Neurol. 16:S128-S134.

    PubMed  Google Scholar 

  34. Grisar, T., Franck, G., and Delgado-Escueta, A. V. 1983. Na+, K+-ATPase within neurons and glia in the generation of seizures. Pages 199–208,in Delgado-Escueta, A. V., Wasterlain, C. G., Treiman, D. M., and Porter, R. J. (eds), Advances in Neurology, Vol. 34: Status Epilepticus, Raven Press, New York.

    Google Scholar 

  35. Averet, N., Arrigoni, E., Loiseau, H., and Cohadon, F. 1987. Na+, K+-ATPase Activity of glial, neuronal, and synaptosomal enriched fractions from normal and freezing-injured rabbit cerebral cortex. Neurochem. Res. 12:607–612.

    PubMed  Google Scholar 

  36. Hamberger, A., Blomstrand, C., and Lehninger, A. L. 1970. Comparative studies on mitochondria isolated from neuron-enriched and glia-enriched fractions of rabbit and beef brain. J. Cell Biol. 45:221–234.

    PubMed  Google Scholar 

  37. Kimelberg, H. K., Biddlecome, S., Namuri, S., and Bourke, R. S. 1978, ATPase and carbonic anhydrase activities of bulk-isolated neuron, glia and synaptosome fractions from rat brain. Brain Res. 141:305–323.

    PubMed  Google Scholar 

  38. Nagata, Y., Mikoshiba, K., and Tsukada, Y. 1974. Neuronal cell body enriched and glial cell enriched fractions from young and adult rat brains: preparation and morphological and biochemical properties. J. Neurochem. 22:493–503.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, O.P., Delivoria-Papadopoulos, M., Cahillane, G. et al. Lipid peroxidation as the mechanism of modification of the affinity of the Na+, K+-ATPase active sites for ATP, K+, Na+, and strophanthidin in vitro. Neurochem Res 14, 845–851 (1989). https://doi.org/10.1007/BF00964813

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964813

Key Words

Navigation