Skip to main content
Log in

Co-existence between receptors, carriers, and second messengers on astrocytes grown in primary cultures

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This overview deals with the current important problem of the expression by astrocytes of a set of funtional and neurochemical properties which, until a few years ago, were thought to be specific for neurons. The interaction of different receptor functions and carrier systems in astrocytes and the functional importance of second messenger systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agnati, L. F., Fuxe, K., Benfenati, F., Battistini, N., Zini, I., Camurri, M., and Hökfelt, T. 1984. Postsynaptic effects of neuropeptide comodulators at central monoamine synapses. Pages 191–198,in: E. Usdin, A. Carlsson, A. Dahlström and J. Engel, (eds.), Neurology and Neurobiology, Vol. 8B: Catecholamines, part B: Neuropharmacology and central nervous system-Theoretical aspects. Alan. R. Liss, Inc., New York.

    Google Scholar 

  2. Berridge, M. J. 1986. Intracellular signalling through inositol trisphosphate and diacylglycerol. Biol. Chem. Hoppe-Seyler, 367:447–456.

    PubMed  Google Scholar 

  3. Birnbaumer, L., Codina, J., Mattera, R., Cerione, R. A., Hildebrandt, J. D., Sunyer, T., Rojas, F. J., Caron, M. G., Lefkowitz, R. J., and Iyengar, R. 1985. Regulation of hormone receptors and adenyl cyclases by guanine nucleotide binding N proteins. Recent Prog. Horm. Res. 41:41–99.

    PubMed  Google Scholar 

  4. Bowman, C. L., and Kimelberg, H. K. 1984. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature, 311:656–659.

    PubMed  Google Scholar 

  5. Chneiweiss, H., Glowinski, J., and Prémont, J. 1985. Vasoactive intestinal polypeptide receptors linked to an adenylate cyclase, and their relationship with biogenic amine- and somatostatin-sensitive adenylate cyclases on central neuronal and glial cells in primary cultures. J. Neurochem. 44:779–786.

    PubMed  Google Scholar 

  6. Davis, R. J., and Czech, M. P. 1985. Platelet-derived growth factor mimics phorbol diesters action on epidermal growth factor receptor phosphorylation at threonine-654. Proc. Natl. Acad. Sci. 82:4080–4084.

    PubMed  Google Scholar 

  7. Drummond, A. H. 1985. Bidirectional control of cytosolic free calcium by thyrotropin-releasing hormone in pituitary cells. Nature 315:752–755.

    PubMed  Google Scholar 

  8. Evans, T., McCarthy, K. D. and Harden, T. K. 1984. Regulation of cyclic AMP accumulation by peptide hormone receptors in immunocytochemically defined astroglial cells. J. Neurochem. 43:131–138.

    PubMed  Google Scholar 

  9. Exton, J. H. 1988. Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J. 2:2670–2676.

    PubMed  Google Scholar 

  10. Fonnum, F. 1984. Gultamate: a neurotransmitter in mammalian brain. J. Neurochem. 42:1–11.

    PubMed  Google Scholar 

  11. Fuxe, K., Agnati, L. F., Benfenati, F., Celani, M., Zini, I., Zoli, M., and Mutt, V. 1983. Evidence for the existence of receptor-receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J. Neural Transm. Suppl 18:165–179.

    Google Scholar 

  12. Fuxe, K., and Agnati, L. F. 1985. Receptor-receptor interaction in the central nervous system. A new integrative mechanism in synapses. Med. Res. Rev. 5:441–482.

    PubMed  Google Scholar 

  13. Gallo, V., Suergiu, R., and Levi, G. 1986. Kainic acid stimulates GABA release from a subpopulation of cerebellar astrocytes. Eur. J. Pharmacol. 133:319–322.

    Google Scholar 

  14. Gallo V., Suergiu, R., and Levi G. 1987. Functional evaluation of glutamate receptor subtypes in cultured cerebellar neurones and astrocytes. Eur. J. Pharmacol. 138:293–297.

    PubMed  Google Scholar 

  15. Hansson, E. 1989. Regulation of glutamine synthetase synthesis and activity by glucocorticoids and adrenoceptor activation in astroglial cells. Neurochem. Res. Vol. 14 No 6 (in press).

  16. Hansson, E. 1988. Astroglia from defined brain regions as studied with primary cultures. Progr. Neurobiol. 30:369–397.

    PubMed  Google Scholar 

  17. Hansson, E., Simonsson, P., and Alling, C. 1987. 5-hydroxytryptamine stimulates the formation of inositol phosphate in astrocytes from different regions of the brain. Neuropharmacol. 26:1377–1382.

    Google Scholar 

  18. Hansson, E., and Rönnbäck, L. 1988. Interaction between catecholamines and vasoactive intestinal peptide in cultured astrocytes. Neuropharmacol. 27:295–300.

    Google Scholar 

  19. Hansson, E., and Rönnbäck, L. 1988. Regulation of glutamate and GABA transport by adrenoceptors in primary astroglial cell cultures. Life Sci. 44:27–34.

    Google Scholar 

  20. Hansson, E., Simonsson, P., and Alling, C. 1989. Interactions between cyclic AMP and inositolphosphate transduction systems in astrocytes in primary culture. Submitted.

  21. Hösli, L., Andres, P. F., and Hösli, E. 1979. Depolarization of cultured astrocytes by glutamate and aspartate. Neuroscience 4:1493–1598.

    PubMed  Google Scholar 

  22. Hökfelt, T., Johansson, O., Goldstein, M. 1984. Chemical anatomy of the brain. Science 225:1326–1334.

    PubMed  Google Scholar 

  23. Hökfelt, T., Skirboll, L., Everitt, B. J., Meister, B., Brownstein, M., Jacobs, T., Faden, A., Knya, S., Goldstein, M., Markstein, R., Dockray, G., and Rehfeld, J., 1985. Distribution of cholecystokinin-like immunoreactivity in the nervous system with special reference to co-existence with classical neurotransmitters and other neuropeptides. Pages 255–274,in J. J. Vanderhaeghen and J. Crawley, (eds.), Neuronal Cholecystokinin. Ann. N. Y. Acad. Sci., New York.

    Google Scholar 

  24. Hökfelt, T., Holets, V. R. Staines, W., Meister, B., Melander, T., Schalling, M., Schultzberg, M., Freedman, J., Björklund, H., Olson, L., Lindh, B., Elfvin, L.-G., Lundberg, J. M. Lindgren, J. Å., Samuelsson, B., Pernow, B., Terenius, L., Post, C., Everitt, B., and Goldstein, M. 1986. Coexistence of neuronal messengers-an overview. Pages 33–70in: T. Hökfelt, K. Fuxe, and B. Pernow, (eds.), Progress in Brain Research, Vol. 68, T. Elsevier Science Publishers B.V.

  25. Kelleher, D. J., Pessin, J. E., Rucho, A. E., and Johnson, G. L. 1984. Phorbol ester induces desersitization of adenylate cyclase and phosphorylation of the β-adrenergic receptor in turkey erythrocytes. Proc. Natl. Acad. Sci. (USA) 81:4316–4320.

    Google Scholar 

  26. Kettenmann, H., and Schachner, M. 1985. Pharmacological properties of γ-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astrocytes. J. Neurosci. 5:3295–3301.

    PubMed  Google Scholar 

  27. Kirilovsky, J., Steiner-Mordoch, S., Selinger, Z., and Schramm, M. 1985. Lipid requirements for reconstitution of the delipidated beta-adrenergic receptor and the regulatory protein. FEBS Lett. 183:75–80.

    PubMed  Google Scholar 

  28. Knight, D. E., and Scrutton, M. C. 1984. Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion. Nature, 309:66–68.

    PubMed  Google Scholar 

  29. Lefkowitz, R. J., Stadel, J. M., and Caron, M. G. 1983. Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and deactivation. Ann. Rev. Biochem. 52:159–186.

    PubMed  Google Scholar 

  30. Lehmann, A., and Hansson, E. 1988. Kainate-induced stimulation of amino acid release from primary astroglial cultures of the rat hippocampus. Int. J. Neurochem. 13:557–561.

    Google Scholar 

  31. Limas, C. J., and Limas, C. 1985. Carbachol induces desensitization of cardiac β-adrenergic receptors through muscarinic M1 receptors. Biochem. Biophys. Res. Commun. 128:699–704.

    PubMed  Google Scholar 

  32. Lundberg, J. M., and Hökfelt, T. 1983. Coexistence of peptides and classical neurotransmitters. Trends Neurosci. 6:325–333.

    Google Scholar 

  33. Markstein, R. and Hökfelt, T. 1984. Effect of cholecystokininocta-peptide on dopamine release from slices of cat caudate nucleus. J. Neurosci. 4:570–575.

    PubMed  Google Scholar 

  34. Matyja, E. 1986. Morphologic evidence of a primary response of glia to kainic acid administration into the rat neostriatum; studied in vivo and in vitro. Exp. Neurol. 92:609–623.

    PubMed  Google Scholar 

  35. McGinnis, J. F., and de Vellis, J. 1978. Glucocorticoid regulation in rat brain cell cultures. J. Biol. Chem. 253:8483–8492.

    Google Scholar 

  36. Mitchell, R., and Fleetwood-Walker, S. 1981. Substance P1 but not TRH modulates the 5-HT autoreceptor in ventral lumbar spinal cord. Eur. J. Pharmacol. 76:119–120.

    PubMed  Google Scholar 

  37. Murphy, S., and Pearce, B. 1987. Functional receptors for neurotransmitters on astroglial cells. Neurosci. 22:381–394.

    Google Scholar 

  38. Nadler, J. V., Perry, B. W., Gentry, C., and Cotman, C. W. 1980. Degeneration of hippocampal CA 3 pyramidal cells induced by intraventricular kainic acid. J. Comp. Neurol. 192:333–359.

    PubMed  Google Scholar 

  39. Neer, E. J., and Clapham, D. E. 1988. Roles of G proteins subunits in transmembrane signalling. Nature 333:127–134.

    Google Scholar 

  40. Niehoff, D. L., and Mudge, A. W. 1985. Somatostatin alters β-adrenergic receptor effector coupling in cultured rat astrocytes. EMBO J. 4:317–321.

    PubMed  Google Scholar 

  41. Nordstedt, C., and Fredholm, B. B. 1987. Phorbol 12,13-dibutyrate enhances the cyclic AMP accumulation in rat hippocampal slices induced by adenosine analogues. Naunym-Schmiedeberg's Arch. Pharmacol. 335:136–142.

    Google Scholar 

  42. Northam, W. J., and Mobley, P. 1985. Clonidine pretreatment enhances the sensitivity of the β-noradrenergic receptor coupled adenylate-cyclase system in astrocytes. Eur. J. Pharmacol. 113:153–154.

    PubMed  Google Scholar 

  43. Olney, J. W., Labruyere, J., Samson, L., Carpenter, M., and Mahan, K. 1986. The anti-excitotoxic effects of certain anesthetics, analgesics and sedative-hypnotics. Neurosci. Lett. 68:29–34.

    PubMed  Google Scholar 

  44. Pearce, B., Cambray-Deakin, M., Morrow, C., Grimble, J., and Murphy, S. 1985. Activation of muscarinic and of alpha1-adrenergic receptors on astrocytes results in the accumulation of inositol phosphates. J. Neurochem. 45:1534–1540.

    PubMed  Google Scholar 

  45. Pearce, B., Albrecht, J., Morrow, C., and Murphy, S. 1986 Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci. Letter. 72:335–340.

    Google Scholar 

  46. Pishak, M. R., and Phillips, A. T. 1980. Glucocorticoid stimulation of glutamine synthetase production in cultured rat glioma cells. J. Neurochem. 34:866–872.

    PubMed  Google Scholar 

  47. Rickard, J. E., and Sheterline, P. 1985. Evidence that phorbol ester interferes with stimulated Ca2+ redistribution by activating Ca2+ efflux in neutropohil leucocytes. Biochem. J. 231:623–628.

    PubMed  Google Scholar 

  48. Rink, T. J., Sanchez, A., and Hallam, T. J. 1983. Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305:317–319.

    PubMed  Google Scholar 

  49. Ritchie, T., Cole, R., Kim, H.-S., de Vellis, J., and Noble, E. P. 1987. Inositol phospholipid hydrolysis in cultured astrocytes and oligodendrocytes. Life Sci. 41:31–39.

    PubMed  Google Scholar 

  50. Rodbell, M. 1980. The role of hormone receptors and GTP regulatory proteins in membrane transduction. Nature 284:17–22.

    PubMed  Google Scholar 

  51. Rougon, G., Noble, M., and Mudge, A. W. 1983. Neuropeptides modulate the beta-adrenergic response of purified astrocytes in vitro. Nature 305:715–717.

    PubMed  Google Scholar 

  52. Schultzberg, M., Hökfelt, T., and Lundberg, J. M. 1982. Coexistence of classical transmitters and peptides in the central and peripheral nervous system. Brit Med. Bull. 38:309–313.

    PubMed  Google Scholar 

  53. Shain, W., Madelian, V., Martin, D. L., Kimelberg, H. K., Perrone, M. and Lepore, R. 1986. Activation of β-adrenergic receptors stimulates release of an inhibitory, transmitter from astrocytes. J. Neurochem. 46:1298–1303.

    PubMed  Google Scholar 

  54. Sibley, D. R., Nambi, P., Peters, J. R., and Lefkowitz, R. J. 1984. Phorbol diesters promote β-adrenergic receptor phosphorylation and adenylate cyclase desensitization in duck erythrocytes. Biochem. Biophys. Res. Commun. 121:973–979.

    PubMed  Google Scholar 

  55. Sibley, D. R., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J. 1988. Phosphorylation of cell surface receptors: A mechanism for regulating signal transduction pathways. Endocrine Rev. 9:38–56.

    Google Scholar 

  56. Sontheimer, H., Kettenmann, H., Backus, K. H., and Schachner, M. 1988. Glutamate opens Na+/K+ channels in cultured astrocytes. GLIA 1:328–336.

    PubMed  Google Scholar 

  57. Stone, T. W., and Connick, J. H. 1985. Quinolinic acid and other kynurenines in the central nervous system. Neuroscience 15:597–617.

    PubMed  Google Scholar 

  58. Sugden, D., Vanecek, J., Klein, D. C., Thomas, T. P., and Anderson, W. B. 1985. Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature 314:359–361.

    PubMed  Google Scholar 

  59. Swann, K., and Whitaker, M. 1985. Stimulation of the Na/H exchanger of sea urchin eggs by phorbol ester. Nature, 314:274–277.

    PubMed  Google Scholar 

  60. Yoshimasa, T., Sibley, D.R., Bouvier, M., Lefkovitz, R. J., and Caron, M. G. 1987. Cross-talk between second messenger generating systems: phorbol esters induce phosphorylation of the catalytic unit of adenylate cyclase activity and enhancement of its activity. Nature 327:67–70.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, E. Co-existence between receptors, carriers, and second messengers on astrocytes grown in primary cultures. Neurochem Res 14, 811–819 (1989). https://doi.org/10.1007/BF00964809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964809

Key Words

Navigation