Advertisement

Neurochemical Research

, Volume 5, Issue 6, pp 583–589 | Cite as

Effect of anoxia and hypoxia on brain lipid metabolism

  • J. Strosznajder
  • K. Domańska-Janik
Original Articles

Abstract

Lipid metabolism in rat brain was investigated in mild hypoxia (5–7% O2 in nitrogen), which is associated with no apparent change in energy metabolism, and in severe anoxic conditions (ischemic anoxia), which are associated with a rapid decrease in ATP and oxygen content in brain. When brain slices were incubated with labeled glucose or acetate, the amount of labeled CO2 produced was no different in experimental and control conditions, but the incorporation of radioactivity into brain lipids was decreased in all hypoxic and anoxic conditions. Interestingly, the incorporation of label from [14C]glucose into phosphatidylinositols was specifically inhibited by both hypoxic conditions but not by conditions associated with anoxia. The incorporation of the same labeled precursor, i.e., [14C]glucose, into fatty acids was elevated in ischemic anoxia but reduced after mild hypoxia. Because of the obvious differences in oxygen utilization in brain in anoxic and hypoxic conditions, we believe that the observed disturbances in lipid metabolism may be due to factors other than those that arise from oxygen deficiency alone.

Keywords

Glucose Lipid Metabolism Energy Metabolism Oxygen Content Hypoxic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazan, N. G., Jr. 1970. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218:1–10.Google Scholar
  2. 2.
    Bazan, N. G., de Bazan, H. E. P., Kennedy, W. G., andJoel, C. D. 1971. I. Regional distribution and rate of production of free fatty acids in rat brain. J. Neurochem. 18:1387–1393.Google Scholar
  3. 3.
    Bray, G. A. 1960. A simple efficient liquid scintillation for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem. 1:279–285.Google Scholar
  4. 4.
    Domańska-Janik, K., andZalewska, T. 1980. Effect of anoxia and depolarization on the movement of carbon atoms derived from glucose into macromolecular fractions in rat brain slices. J. Neurosci. Res. (in press).Google Scholar
  5. 5.
    Domańska-Janik, K., Zaleska, M., Zalewska, T., andWitter, B. 1978. Glucose metabolism in ischemic brain of young and adult rats. Pages 87–95,in Cerebral Ischemia and Arterial Hypertension,Mossakowski, M. J., Zelman, I. B., andKroh, M., (eds.), Pol. Med. Publ., Warsaw.Google Scholar
  6. 6.
    Folch, J., Lees, M., andSloane-Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.Google Scholar
  7. 7.
    Hinzen, D. H., Isselhard, W., Füsgen, O., andMüller, U. 1970. Phospholipid-Stoffwechsel und Function des Säugergehirns in vivo. I. Katabole Veränderung der Phospholipide in verschiedenen Anteilen des Kaninchen gehirns während Ischämie. Pflügers Arch. 318:117–129.Google Scholar
  8. 8.
    Kates, M. 1972. Total fatty acids and unsaponifiable material. Pages 361–364,in Work, T. S., andWork, E. (eds.), Techniques in Lipidology, Holland American Elsevier.Google Scholar
  9. 9.
    Kosow, D. P., Schwarz, H. P., andMarmolejo, A. 1966. Lipid biosynthesis in anoxic-ischemic rat brain. J. Neurochem. 13:1139–1142.Google Scholar
  10. 10.
    Strosznajder, J., Gromek, A., andLazarewicz, J. 1972. Wplyw niedokrwienia na zawartość wolnych kwasów tluszczowych w mózgu świnek morskich. Neuropathol. Pol. 10:447–455.Google Scholar
  11. 11.
    Strosznajder, J., Dabrowiecki, Z., andRadomińska-Pyrek, A. 1978. Effect of hypoxia on enzymic synthesis of diacyl and ether types of choline and ethanolamine phosphoglycerides in rat brain microsomes. Pages 103–109,in Mossakowski, M. J., Zelman, I. B., andKroh, M. (eds.), Cerebral Ischemia and Arterial Hypertension, Pol. Med. Publ., Warsaw.Google Scholar
  12. 12.
    Strosznajder, J., andDabrowiecki, Z. 1977. Enzymic synthesis of ethanolamine plasmalogens in the microsomal fraction of rat brain under oxygen deficiency. Bull. Acad. Polon. Sci. Biol. 25:133–139.Google Scholar
  13. 13.
    Strosznajder, J. 1979. The effect of hypoxic hypoxia on brain phospholipids and free fatty acids during development. Page 94,in, Abstracts, International Meeting on a Multidisciplinary Approach to Brain Development. Selva di Fasano, Brindisi, Italy.Google Scholar
  14. 14.
    Zalewska, T., andDomańska-Janik, K. 1979. Energy utilization and changes in some intermediates of glucose metabolism in normal and hypoxic rat brain after decapitation. Resuscitation (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • J. Strosznajder
    • 1
  • K. Domańska-Janik
    • 1
  1. 1.Department of Neurochemistry, Medical Research CentrePolish Academy of SciencesWarsawPoland

Personalised recommendations