Skip to main content
Log in

Summary

In order to distinguish the effects of beta-receptor stimulation on the ECG from other factors during short-term adjustment to hypoxic aerohypoxia, the ECG of 19 volunteers were compared during moderately acute, stepwise exposure to high altitude (6,000 m) in a low pressure chamber, once with and once without beta-receptor blockade (propranolol), and after isoprenaline inhalation at ground level. The results show that beta-receptor stimulation accounts mainly for most ECG changes during altitude exposure, i.e., for the shortening of R-R interval, the lengthening of Q-T and in particular for the ST-T flattening, the latter therefore being only an indirect sign of hypoxia. After exclusion of the catecholamines, the minor but still significant ECG changes at altitude (shortening of R-R interval, increase of P wave, prolongation of P-Q, deviation of the R vector, T wave flattening in the left precordial leads) may be attributed to other, so far undefined factors, such as cardiac hypoxia, vagal withdrawal, or increase of pulmonary resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biberman L, Sarma RN, Surawicz B (1971) T-wave abnormalities during hyperventilation and isoproterenol infusion. Am Heart J 81: 166–174

    PubMed  Google Scholar 

  • Boutellier U, Koller EA (1981) Propranolol and the respiratory, circulatory, and ECG responses to high altitude. Eur J Appl Physiol 46: 105–119

    Google Scholar 

  • Bühlmann A (1965) Klinische Funktionsprüfung des Herzens. Schweiz Med Wochenschr 95: 1327–1332

    PubMed  Google Scholar 

  • Cunningham WL, Becker EJ, Kreuzer F (1965) Catecholamines in plasma and urine at high altitude. J Appl Physiol 20: 607–610

    PubMed  Google Scholar 

  • Furberg C, Tengblad CF (1966) Adrenergic beta-receptor blockade and the effect of hyperventilation on the electrocardiogramm. Scand J Clin Lab Invest 18: 467–472

    PubMed  Google Scholar 

  • Hegglin R, Holzmann M (1937) Die klinische Bedeutung der verlÄngerten QT-Distanz (Systolendauer) im Elektrokardiogramm. Z Klin Med 132: 1–32

    Google Scholar 

  • Holzmann M (1961) Klinische Elektrokardiographie. Stuttgart: Georg Thieme Verlag, Stuttgart New York, pp 91–115

    Google Scholar 

  • Hopff L, Huber AK, Wyss OAM (1963) Studien zur Vektorkar-diographie. III. Der Nachweis des ProximitÄtseffektes der vorderen Brustwandelektrode beim Menschen. Arch f Kreislaufforsch 40: 236–251

    Google Scholar 

  • Jorgensen ChR, Wang K, Wang Y, Gobel FL, Nelson RR, Taylor H (1973) Effect of propranolol on myocardial oxygen consumption and its hemodynamic correlates during upright exercise. Circulation 48: 1173–1182

    PubMed  Google Scholar 

  • Koller EA, Boutellier U, Ziegler WH (1983) Zum Einflu\ der Katecholamine und von Propranolol auf die akute Höhenanpassung des Menschen. Schweiz Med Wochenschr 113: 1989–1999

    PubMed  Google Scholar 

  • Kumada T, Gallager KP, Shirato K, McKown D, Miller M, Kemper WS, White F, Ross J (1980) Reduction of exercise-induced regional myocardial dysfunction by Propranolol. Circ Res 46: 190–200

    PubMed  Google Scholar 

  • Laciga P, Koller EA (1976) Respiratory, circulatory, and ECG changes during acute exposure to high altitude. J Appl Physiol 41: 159–167

    PubMed  Google Scholar 

  • Laciga P, Koller EA (1978) Respiratory, circulatory and ECG changes at 6,000m and 7,000m. Experientia 34: 900

    Google Scholar 

  • Lepeschkin E (1957) Das Elektrokardiogramm. Theodor Steinkopff, Dresden-Leipzig, p 304

    Google Scholar 

  • Peńaloza D, Echevarria M, Marticorena E, Gamboa R (1958) Early electrocardiographic changes produced by ascending to high altitude. Am Heart J 56: 493–500

    PubMed  Google Scholar 

  • Puddu PE, Bernard PM, Chaitman BR, Bourassa MG (1982) Q-T interval measurement by a computer assisted program: A potentially useful clinical paramter. J Electrocard 15: 15–22

    Google Scholar 

  • Reuter H (1981) Beta-adrenoceptor stimulation and membrane calcium permeability. In: Delius W, Gerlach E, Grobecker H, Kubier W (eds) Catecholamines and the heart. Springer, Berlin Heidelberg New York Tokyo, p 170

    Google Scholar 

  • Saurenmann P, Koller EA (1982) ECG changes due to altitude and to Catecholamines. Experientia 38: 718

    Google Scholar 

  • Senges J, Henning E, Brachmann J, Pelzer D, Mizutani T, Kübler W (1980) Effects of orciprenaline on the sinoatrial and atrioventricular nodes in presence of hypoxia. J Mol Cell Cardiol 12: 135–147

    PubMed  Google Scholar 

  • Swanström S, Bratteby LE (1982) Hypoxanthine as a test of perinatal hypoxia as compared to lactate, base deficit, and pH. Pediatr Res 16: 156–160

    PubMed  Google Scholar 

  • Thomsen JH, Wasserburger RH (1967) Effect of hyperventilation on precordial T waves of children and adolescents. Circulation 36: 700–707

    PubMed  Google Scholar 

  • Tuchschmid PE, Boutellier U, Koller EA, Duc GV (1981) Comparison of hypoxanthine, lactate, and ECG signs as indicators of hypoxia. Pediatr Res 15: 28–33

    PubMed  Google Scholar 

  • Van Liere EJ, Stickney JC (1963) Hypoxia. University of Chicago Press, Chicago-London, p 6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. O. A. M. Wyss on the occasion of his 80th birthday

The study was supported in part by a grant from the “Stiftung für wissenschaftliche Forschung an der UniversitÄt Zürich”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saurenmann, P., Koller, E.A. The ECG changes due to altitude and to catecholamines. Europ. J. Appl. Physiol. 53, 35–42 (1984). https://doi.org/10.1007/BF00964687

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964687

Key words

Navigation