Skip to main content
Log in

Polyamine reutilization and turnover in brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

N1, N2-bis-(2, 3-butadienyl)-1, 4-butanediamine (MDL 72527) is an irreversible, specific inhibitor of polyamine oxidase, which allows one to completely inactivate this enzyme in all organs of an experimental animal. As a result one observes a linear increase of N1-acetylsperimidine and N1-acetylspermine concentrations in brain. The rate of accumulation seems directly proportional to the rate of spermidine, and spermine degradation respectively, and since no compensatory changes of the polyamine synthetic enzymes, were induced by inhibition of polyamine oxidase, the rate of acetyl-polyamine accumulation is assumed to be a measure for polyamine turnover. The decrease of brain putrescine levels by 70 percent in the brains of MDL 72527-treated animals suggests the quantitative significance of putrescine reutilisation. Pretreatment of the animals with D, L-α-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase reduced both, polyamine turnover rate and the extent of putrescine reutilization. Inhibition of GAPA-T produced a significant increase of polyamine turnover in brain, in agreement with the known induction of ornithine decarboxylase activity after treatment with inhibitors of GABA-T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seiler, N. 1981. Amide-bond-forming reactions of polyamines. Pages 127–149, inMorris, D. R., andMarton, L. J. (eds.) Polyamines in biology and medicine. Marcel Dekker, New York, Basel.

    Google Scholar 

  2. Bolkenius, F.N., andSeiler, N. 1981. Acetylderivatives as intermediates in polyamine catabolism. Int. J. Biochem. 13:287–292.

    PubMed  Google Scholar 

  3. Pegg, A. E., Seely, J. E., Pösö, H., Della ragione, F., andZagon, I. S. 1982. Polyamine biosynthesis and interconversion in rodent tissues. Fed. Proc. 41:3065–3072.

    PubMed  Google Scholar 

  4. Bolkenius, F. N., Bey, P., andSeiler N. 1984. Biochemical properties of some enzyme-activated irreversible inhibitors of polyamine oxidase (PAO), Abstr. No. 51. Intern. Conf. on Polyamines, Budapest, Hungary, August 6–10.

  5. Bolkenius, F. N., andSeiler, N. 1984. Some biochemical consequences of polyamine oxidase (PAO) inhibition. Abstr. No. 52. Intern. Conf. on Polyamines, Budapest, Hungary, August 6–10.

  6. Tabor, H., Tabor, C. W., andDe Meis, L. 1971. Chemical synthesis of N-acetyl-1,4-diaminobutane, N1-acetylspermidine and N8-acetylspermidine. Meth. Enzymol. 17b:829–833.

    Google Scholar 

  7. Seiler, N., Bolkenius, F. N., Knödgen, B., andMamont, P. 1980. Polyamine oxidase in rat tissues. Biochim. Biophys. Acta 615:480–488.

    PubMed  Google Scholar 

  8. Seiler, N., Bolkenius, F. N., andSarhan, S. 1981. Formation of acetypolyamines in the liver of fasting animals. Int. J. Biochem. 13:1205–1214.

    PubMed  Google Scholar 

  9. Ono, M., Inoue, H., Suzuki, F., andTakeda, Y. 1972. Studies on ornithine decarboxylase from the liver of thioacetamide-treated rats. Biochim. Biophys. Acta 284:285–297.

    PubMed  Google Scholar 

  10. Pegg, A. E., andWilliams-Ashman, H. G. 1969. On the role ofS-adenosylmethionine in the biosynthesis of spermidine by rat prostate. J. Biol. Chem. 244:682–693.

    PubMed  Google Scholar 

  11. Seiler, N., andSarhan, S. 1980. On the nonoccurrence of ornithine decarboxylase in nerve endings. Neurochem. Res. 5:97–100.

    Google Scholar 

  12. Seiler, N. andKnödgen, B. 1980. High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J. Chromatog. 221:227–235.

    Google Scholar 

  13. Bey, P. 1978. Substrate-induced irreversible inhibition of α-aminoacid decarboxylases. Application to glutamate, aromatic L-α-aminoacid and ornithine decarboxylases. Pages 27–41, inSeiler, N., Jung, M. J., andKoch-Weser, J. (eds.) Enzyme-activated irreversible inhibitors. Elsevier, Amsterdam, New York, Oxford.

    Google Scholar 

  14. Mamont, P. S., Duchesne, M.-C., Joder-Ohlenbusch, A.-M., andGrove., J. 1978. Effects of ornithine decarboxylase inhibitors on cultured cells. Pages 43–54, inSeiler, N., Jung, M. J., andKoch-Weser, J. (eds.) Enzyme-activated irreversible inhibitors. Elsevier, Amsterdam, New York, Oxford.

    Google Scholar 

  15. Seiler, N., Danzin, C., Prakash, N. J., andKoch-Weser, J. 1978. Effects of ornithine decarboxylase inhibitors in vivo. Pages 55–71, inSeiler, N., Jung, M. J., andKoch-Weser, J. (eds.) Enzyme-activated irreversible inhibitors. Elsevier, Amsterdam, New York, Oxford.

    Google Scholar 

  16. Jung, M. J., Lippert, B., Metcalf, B. W., Böhlen, P., andSchechter, P. J. 1977. γ-VinylGABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: effects on brain GABA metabolism in mice. J. Neurochem. 29:797–802.

    PubMed  Google Scholar 

  17. Jung, M. J., Lippert, B., Metcalf, B. W., Schechter, P. J., Böhlen, P., andSjoerdsma, A. 1977. The effect of 4-amino-hex-5-ynoic acid (γ-acetyl-enicGABA, γ-ethynylGABA) a catalytic inhibitor of GABA transaminase, on brain GABA metabolism in vivo. J. Neurochem. 28:717–723.

    PubMed  Google Scholar 

  18. Seiler, N., Bink, G., andGrove, J. 1979 Regulatory interrelations between GABA and polyamines. I. Brain GABA levels and polyamine metabolism. Neurochem. Res. 4:425–435.

    Google Scholar 

  19. Antrup, H. andSeiler, N. 1980. On the turnover of polyamines spermidine and spermine in mouse brain and other organs. Neurochem. Res. 5:123–143.

    PubMed  Google Scholar 

  20. Seiler, N. 1981. Turnover of polyamines. Pages 169–180, inMorris, D. R., andMarton, L. J. (eds.) Polyamines in biology and medicine. Marcel Dekker, New York, Basel.

    Google Scholar 

  21. Seiler, N., Bolkenius, F. N., andRennert, O. M. 1981. Interconversion catabolism and elimination of the polyamines. Med. Biol. 59:334–346.

    PubMed  Google Scholar 

  22. Nakajima, T. andMatsuoka, Y. 1971. Distribution of putreanine in organs of rats and rabbits. J. Neurochem. 19:2547–2548.

    Google Scholar 

  23. Seiler, N., Knödgen, B., Bink, G., Sarhan, S., andBolkenius, F. 1983. Diamine oxidase and polyamine catabolism. Adv. Polyamines Res. 4:135–154.

    Google Scholar 

  24. Burkard, W. P., Gey, K. F., andPletscher, A. 1963. Diamine oxidase in the brain of vertebrates. J. Neurochem. 10:183–186.

    PubMed  Google Scholar 

  25. Seiler, N., Bolkenius, F. N., Knödgen, B. andHaegele, K. 1981. The determination of N1-acetylspermine in mouse liver. Biochim. Biophys. Acta 676:1–7.

    PubMed  Google Scholar 

  26. Seiler, N., Bolkenius, F. N., andKnödgen, B. 1985. The influence of catabolic reactions on polyamine excretion. Biochem. J. 225:219–226.

    PubMed  Google Scholar 

  27. Tabor, C. W., Tabor, H., andBachrach, U. 1964. Identification of the aminoaldehydes produced by oxidation of spermine and spermidine in purified plasma amine oxidase. J. Biol. Chem. 239:2194–2203.

    PubMed  Google Scholar 

  28. Jung, M. J., andSeiler, N. 1978. Enzyme-activated irreversible inhibitors ofl-ornithine: 2-oxoacid aminotransferase. J. Biol. Chem. 253:7431–7439.

    Google Scholar 

  29. Pajunen, A. E. I., Hietala, O. A., Baruch-Virransalo, E. L., andPiha, S. S. 1979. The effect ofD, l-allylglycine on polyamine and GABA metabolism in mouse brain. J. Neurochem. 32:1401–1408.

    PubMed  Google Scholar 

  30. Ortiz, J. G., Giacobini, E., andSchmidt-Glenewinkel, T. 1984. Allylglycine affects acetylation of putrescine and spermidine in mouse brain. Neuropharmacol. 23:387–390.

    Google Scholar 

  31. Williams-Ashman, H. G., andPegg, A. E., 1981. Aminopropyl group transfers in polyamine biosynthesis. Pages 43–73, inMorris, D. R., andMarton, L. J. (eds.) Polyamines in biology and medicine. Marcel Dekker, New York, Basel.

    Google Scholar 

  32. Rudkin, B. B., Mamont, P. S., andSeiler, N. 1984. Decreased protein-synthetic activity is an early consequence of spermidine depletion in rat hepatoma tissue-culture cells. Biochem. J. 217:731–741.

    PubMed  Google Scholar 

  33. Blankenship, J., andAl Shabanah, O. A. 1983. Toxicology of N1-acetylspermidine and N8-acetylspermidine in mice. Fed. Proc. 42; Abstr. No. 7625.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, N., Bolkenius, F.N. Polyamine reutilization and turnover in brain. Neurochem Res 10, 529–544 (1985). https://doi.org/10.1007/BF00964656

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964656

Keywords

Navigation