Neurochemical Research

, Volume 10, Issue 4, pp 453–467 | Cite as

Oxidative metabolism and acetylcholine synthesis during acetylpyridine treatment

  • Gary E. Gibson
  • John P. Blass
Original Articles


In order to clarify the mechanisms by which nicotinic acid deficiency impairs brain function, the effects of the nicotinic acid antimetabolite, 3-acetylpyridine, have been investigated on behavior, cerebral oxidative metabolism, and acetylcholine synthesis. In young rats (21–23 days old), 3-acetylpyridine caused dose- and time-related deficits in behavior, as measured by a neurological scale and by “tight-rope” performance, loss of body weight, and decreased survival. An intermediate dosage decreased cerebral glucose utilization in the inferior olivary nuclei, but increased it in the fastigial, interpositus, red, dentate, vestibular, posterior mamillary, and habenular nuclei. Selective alteration of metabolism was also observed in brain slices from 3-acetylpyridine-treated rats. Although forebrain slices were unaffected, in brainstem slices the synthesis of acetylcholine decreased by 34% with depolarizing (31 mM) concentrations of K+ (P<0.05). This dose of 3-acetylpyridine did not deplete the total pool of NAD in any of the 7 brain regions examined. Thus, the nicotinic acid deficiency which results from 3-acetylpyridine treatment appears to be yet another metabolic encephalopathy in which cholinergic systems are impaired.


Nicotinic Acid Oxidative Metabolism Brain Slice Cholinergic System Total Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carpenter, K. J. 1981. Pellagra. Hutchinson Ross Publishing Company, Pennsylvania, 1981.Google Scholar
  2. 2.
    Gopalan, C., andRao, K. S. J. 1972. Pellagra and amino acid imbalance. Pages 505–524,in Munson, P. Glover, J. Diczfalusy, E., andOlson, R. (eds.), Vitamins and hormones, Vol. 33. Academic Press, New York.Google Scholar
  3. 3.
    Horwitt, M. K. Niacin. Pages 205– Goodhart, R. S., andShills, M. E. (eds.), Modern nutrition in health and disease. Febiger, Philadelphia.Google Scholar
  4. 4.
    Kaplan, N. O., Goldin, A., Humphreys, S. R., Ciotti, M. M., andVenditti, J. M. 1954. Significance of enzymatically catalyzed exchange reactions in chemotherapy. Science 120:437–440.PubMedGoogle Scholar
  5. 5.
    Woolley, D. W. 1963. Antimetabolites of the water soluble vitamins. Pages 445–480,in Hochster, R. M., andQuastel, J. H. (eds.), Metabolic inhibitors: A comprehensive treatise, Vol. 1. Academic Press, New York.Google Scholar
  6. 6.
    Desclin, J. C. 1974. Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res. 77:365–384.PubMedGoogle Scholar
  7. 7.
    Horita, N., Oyanagi, S., Ishii, T., andIzumiyama, Y. 1978. Ultrastructure of 6-aminonicotinamide induced lesions in the central nervous system of rats. I: Chromatolysis and other lesions in the cervical cord. Acta Neuropathol. 44:111–120.PubMedGoogle Scholar
  8. 8.
    Gibson, G. E., andPeterson, C. 1983. Acetylcholine metabolism in septum and hippocampus in vitro. J. Biol. Chem 258:1142–1145.PubMedGoogle Scholar
  9. 9.
    Barclay, L. L., Gibson, G. E., andBlass, J. P. 1981. The string test: an early behavioral change in thiamine deficiency. Pharmacol. Biochem. Behav. 14:153–157.PubMedGoogle Scholar
  10. 10.
    Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., andShinohara, O. M. 1977. The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916.PubMedGoogle Scholar
  11. 11.
    Lowry, O. H., Passonneau, J. V., Schulz, D. W., andRock, M. K. 1961. The measurement of pyridine nucleotides by enzymatic cycling. J. Biol. Chem. 236:2746–2755.PubMedGoogle Scholar
  12. 12.
    Klingenberg, M. 1965. Disphosphopyridine nucleotide, Pages 528–530; Reduced diphosphopyridine nucleotide, Pages 531–534,in Bergmeyer, H. U. (ed.), Enzymatic analysis. Academic Press, New York.Google Scholar
  13. 13.
    Peterson, C., andGibson, G. E. 1982. 3,4-Diaminopyridine alters acetylcholine metabolism and behavior during hypoxia. J. Pharmacol. Exp. Ther. 222:576–582.PubMedGoogle Scholar
  14. 14.
    Garcia-Bunnuel, L., McDougal Jr., D. B., Burch, H. B., Jones, E. M., andTouhill, E. 1962. Oxidized and reduced pyridine nucleotide levels and enzyme activities in brain and liver of niacin deficient rats. J. Neurochem. 9:589–594.PubMedGoogle Scholar
  15. 15.
    Lowry, O. H., andPassonneau, J. V. 1972. A flexible system of enzymatic analysis, Academic Press, New York.Google Scholar
  16. 16.
    Barclay, L. L., Gibson, G. E., andBlass, J. P. 1981. Impairment of behavior and acetylcholine in thiamin deficiency. J. Pharmacol. Exp. Ther. 217:537–543.PubMedGoogle Scholar
  17. 17.
    Gibson, G. E., Pelmas, C. J., andPeterson, C. 1983. Cholinergic drugs and 4-aminopyridine alter hypoxic-induced behavioral deficits. Pharmacol. Biochem. Behav. 18:909–916.PubMedGoogle Scholar
  18. 18.
    Gibson, G. E., Peterson, C., andJenden, D. J. 1981. Brain acetylcholine synthesis decline with senescence. Science 214:674–676.Google Scholar
  19. 19.
    Desclin, J. C., andEscubi, J. 1974. Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods. Brain Res. 77:349–364.PubMedGoogle Scholar
  20. 20.
    Perry, T. L., MacLean, J., Perry Jr., T. L., andHansen, S. 1976. Effects of 3-acetylpyridine on putative neurotransmitter amino acids in rat cerebellum. Brain Res. 109:632–635.PubMedGoogle Scholar
  21. 21.
    Sotelo, C., Hillman, D. E., Zamora, A. J., andLlinas, R. 1975. Climbing fiber deafferentation: its action on Purkinje cell dendritic spines. Brain Res. 98:574–581.PubMedGoogle Scholar
  22. 22.
    Guidotti, A., Biffio, G., andCosta, E. 1975. 3-Acetylpyridine: a tool to inhibit the tremor and the increase of cGMP and content in cerebellar cortex elicited by harmaline. Brain Res. 96:201–205.PubMedGoogle Scholar
  23. 23.
    Jolicoeur, F. B., Rondeau, D. B., Hamel, E., Butterworth, R. F., andBarbeau, A. 1979. Measurement of ataxia and related neurological signs in the laboratory rat. Can. J. Neurol. Sci. 6:209–215.PubMedGoogle Scholar
  24. 24.
    Hakim, A. M., andPappius, H. M. 1981. The effect of thiamin deficiency on local cerebral glucose utilization. Ann. Neurol. 9:334–339.PubMedGoogle Scholar
  25. 25.
    Herken, H., Lange, K., Kolbe, H., andKeller, K. 1974. Pages 41–54,in Genazzani, E., andHerken, H. (eds.), in Central nervous system—studies on metabolic regulation and function. Springer-Verlag, Berlin.Google Scholar
  26. 26.
    Kauffman, F. C., andJohnson, E. C. 1974. Cerebral energy reserves and glycolysis in neural tissue of 6-aminonicotinamide treated mice. J. Neurobiol. 5:379–392.PubMedGoogle Scholar
  27. 27.
    Kriegelstein, J., andStock, R. 1975. Decreased glycolytic flux rate in the isolated perfused rat brain after pretreatment with 6-aminonicotinamide. Naunyn Schmiede. Arch. Pharmacol. 290:323–337.Google Scholar
  28. 28.
    Blass, J. P., Gibson, G. E., Duffy, T. E., andPlum, F. 1981. Cholinergic dysfunction: a common denominator in metabolic encephalopathies. Pages 921– Pepeu, G., andLadinski, H. (eds.), Cholinergic mechanisms: Phylogenetic aspects, central and peripheral synapses, and clinical significance. Plenum Press, New York.Google Scholar
  29. 29.
    Gibson, G. E., andBlass, J. P. 1983. Metabolism and neurotransmission. Pages 633–639,in Lajtha, A. (ed.), Handbook of neurochemistry, Vol. 3, 2nd edition. Plenum Press, New York.Google Scholar
  30. 30.
    Ghajar, J. B. G., Gibson, G. E., andDuffy, T. E. 1985. Cerebral oxidative metabolism and acetylcholine synthesis during acute hypoglycemia and recovery. J. Neurochem. 40:94–98.Google Scholar
  31. 31.
    Butterworth, R. F., Hamel, E., Landreville, F., andBarbeau, A. 1978. Cerebellar ataxia produced by 3-acetylpyridine in rat. Can. J. Neurol. Sci. 5:131–139.PubMedGoogle Scholar
  32. 32.
    McBride, W. J., Rea, M. A., andNadi, N. S. 1978. Effects of 3-acetylpyridine on the levels of several amino acids in different CNS regions of the rat. Neurochem. Res. 3:793–801.PubMedGoogle Scholar
  33. 33.
    McBride, W. J., Rea, M. A., Felton, D. L., Sinisi, N., andRhode, B. H. 1980. Levels of several amino acids in the cerebellar peduncles and four medullary nuclei of control and 3-acetylpyridine treated rats. Neurochem. Res. 5:337–344.PubMedGoogle Scholar
  34. 34.
    Nadi, N. S., Kanter, D., McBride, W. J., Aprison, M. H. 1977. Effects of 3-acetylpyridine on several putative neurotransmitter amino acids in the cerebellum and medulla of the rat. J. Neurochem. 280:661–662.Google Scholar
  35. 35.
    Nakashima, Y., Sanada, H., Utsuki, Y., andKawada, S. 1978. Effect of nicotinic acid on catecholamine synthesis in rat brain. J. Nutr. Sci. Vitaminol. 24:67–76.PubMedGoogle Scholar
  36. 36.
    Sanada, H., Nakashima, Y., Utsuki, Y., andKawada, S. 1978. Effect of niacin deficiency on the metabolism of brain amines in rats. J. Nutr. Sci. Vitaminol. 24:159–166.PubMedGoogle Scholar
  37. 37.
    Scherer, B., andKramer, W. 1972. Influence of niacinamide on brain 5-HT and a possible mode of action. Life Sci. 11:189–195.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Gary E. Gibson
    • 1
  • John P. Blass
    • 1
  1. 1.Altschul Laboratory for Dementia ResearchCornell University Medical College Burke Rehabilitation CenterWhite Plains

Personalised recommendations