Neurochemical Research

, Volume 4, Issue 4, pp 425–435 | Cite as

Regulatory interrelations between GABA and polyamines. I. Brain GABA levels and polyamine metabolism

  • Nikolaus Seiler
  • Gerd Bink
  • Jeffrey Grove
Original Articles


Elevation of brain GABA levels by GABA-T inhibition is accompanied by a decrease ofS-adenosylmethionine decarboxylase activity. This is followed by an increase of ornithine decarboxylase activity and a severalfold increase of brain putrescine levels. Spermidine and spermine levels are not significantly affected under these conditions. These unexpected findings support a regulatory interaction between GABA and polyamine metabolism.


Spermine Ornithine Putrescine Spermidine Regulatory Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seiler, N., Wiechmann, M., Fischer, H. A., andWerner, G. 1971. The incorporation of putrescine carbon into γ-aminobutyric acid in rat liver and brainin vivo.Brain Res. 28:317–325.Google Scholar
  2. 2.
    Seiler, N., andKnödgen, B. 1971. Die Umwandlung von Glutaminsäure, Putrescin und Ornithin in die γ-Aminobuttersäure im Gehirn.Hoppe-Seylers Z. Physiol. Chem. 352:97–105.PubMedGoogle Scholar
  3. 3.
    Seiler, N., Al-Therib, M. J., andKataoka, K. 1973. Formation of GABA from putrescine in the brain of fish (Salmo irideus Gibb.).J. Neurochem. 20:699–708.PubMedGoogle Scholar
  4. 4.
    Kremzner, L. T., Miller, J. M., andSimon, E. J. 1975. Metabolism of polyamines in mouse neuroblastoma cells in culture: Formation of GABA and putreanine.J. Neurochem. 25:889–894.PubMedGoogle Scholar
  5. 5.
    Seiler, N., andEichentopf, B. 1975. 4-Aminobutyrate in mammalian putrescine catabolism.Biochem. J. 152:201–210.PubMedGoogle Scholar
  6. 6.
    Tsuji, M., andNakajima, T. 1978. Studies on the formation of γ-aminobutyric acid from putrescine in rat organs and purification of its synthetic enzyme from rat intestine.J. Biochem. 83:1407–1412.PubMedGoogle Scholar
  7. 7.
    Burkard, W. P., Gey, K. F., andPletscher, A. 1963. Diamine oxidase in the brain of vertebrates.J. Neurochem. 10:183–186.PubMedGoogle Scholar
  8. 8.
    Seiler, N., andAl-Therib, M. J. 1974. Putrescine catabolism in mammalian brain.Biochem. J. 144:29–35.Google Scholar
  9. 9.
    Seiler, N., andAl-Therib, M. J. 1974. Acetyl-CoA: 1,4-diaminobutaneN-acetyltransferase: Occurrence in vertebrate organs and subcellular localization.Biochim. Biophys. Acta 354:206–212.PubMedGoogle Scholar
  10. 10.
    Seiler, N., Lamberty, U., andAl-Therib, M. J. 1975. Acetylcoenzyme A: 1,4-diaminobutaneN-acetyltransferase in rat brain during development, in experimental brain tumors and in brains of fish of different metabolic activity.J. Neurochem. 24:797–800.PubMedGoogle Scholar
  11. 11.
    Seiler, N., andLamberty, U. 1975. Interrelations between polyamines and nucleic acids: Changes of polyamine and nucleic acid concentrations in the developing rat brain.J. Neurochem. 24:5–13.PubMedGoogle Scholar
  12. 12.
    Anderson, T. R., andSchanberg, S. M. 1972. Ornithine decarboxylase activity in developing rat brain.J. Neurochem. 19:1471–1481.PubMedGoogle Scholar
  13. 13.
    Al-Therib, M. J. 1974. Der Stoffwechsel von Putrescin und Monoacetylputrescin im Gehirn von Vertebraten. Ph.D. thesis. J. W. Goethe University, Frankfurt/M., G.F.R.Google Scholar
  14. 14.
    Sobue, K., andNakajima, T. 1978. Changes in concentration of polyamines and γ-aminobutyric acid and their formation in chick embryo brain during development.J. Neurochem. 30:277–279.PubMedGoogle Scholar
  15. 15.
    De Mello, F. G., Bachrach, U., andNirenberg, M. 1976. Ornithine and glutamic acid decarboxylase activities in the developing chick retina.J. Neurochem. 27:847–851.PubMedGoogle Scholar
  16. 16.
    Abdel-Monem, M. M., andOhno, K. 1977. Polyamine metabolism. II.N-(monoalkyl)-andN-(polyaminoalkyl) acetamides in human urine.J. Pharm. Sci. 66:1195–1197.PubMedGoogle Scholar
  17. 17.
    Jung, M. J., andMetcalf, B. W. 1975. Catalytic inhibition of γ-aminobutyric acid-α-ketoglutarate transaminase of bacterial origin by 4-aminohex-5-ynoic acid, a substrate analog.Biochem. Biophys. Res. Commun. 67:301–306.PubMedGoogle Scholar
  18. 18.
    Jung, M. J., Lippert, B., Metcalf, B. W., Schechter, P. J., Böhlen, P., andSjoerdsma, A. 1977. The effect of acetylenic GABA (4-aminohex-5-ynoic acid), a catalytic inhibitor of GABA transaminase, on brain GABA metabolismin vivo.J. Neurochem. 28:717–723.PubMedGoogle Scholar
  19. 19.
    Lippert, B., Metcalf, B. W., Jung, M. J., andCasara, P. 1977. 4-Aminohex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric acid aminotransferase in mammalian brain.Eur. J. Biochem. 74:441–445.PubMedGoogle Scholar
  20. 20.
    Jung, M. J., Lippert, B., Metcalf, B. W., Böhlen, P., andSchechter, P. J. 1977. γ-Vinyl GABA (4-aminohex-5-enoic acid, RMI 71754), a new selective irreversible inhibitor of GABA-T: Effects on brain GABA metabolism in mice.J. Neurochem. 29:797–802.PubMedGoogle Scholar
  21. 21.
    Kobayashi, K., Miyazawa, S., Terahara, A., Mishima, H., andKurihara, H. 1976. Gabaculine: γ-aminobutyrate aminotransferase inhibitor of microbial origin.Tetrahedron Lett. 537–540.Google Scholar
  22. 22.
    Matsui, Y., andDeguchi, T. 1977. Effects of gabaculine, a new potent inhibitor of gamma-aminobutyrate transaminase, on the brain gamma-aminobutyrate content and convulsions in mice.Life Sci. 20:1291–1296.PubMedGoogle Scholar
  23. 23.
    Marton, L. J., andLee, P. L. Y. 1975. More sensitive automated detection of polyamines in physiological fluids and tissue extracts witho-phthalaldehyde.Clin. Chem. 21:1721–1724.PubMedGoogle Scholar
  24. 24.
    Bartos, F., Bartos, D., Grettie, D. P., Campbell, R. A., Marton, L. J., Smith, R. G., andDaves, G. D., Jr. 1977. Polyamine levels in normal human serum: Comparison of analytical methods.Biochem. Biophys. Res. Commun. 75:915–919.PubMedGoogle Scholar
  25. 25.
    Lee, P. L. Y. 1974. Single column system for accelerated amino acid analysis of physiological fluids using five lithium buffers.Biochem. Med. 10:107–121.PubMedGoogle Scholar
  26. 26.
    Jänne, J., andWilliams-Ashman, H. G. 1971. On the purification ofl-ornithine decarboxylase from rat prostate and effects of thiol compounds on the enzyme.J. Biol. 246:1725–1732.Google Scholar
  27. 27.
    Pegg, A. E., andWilliams-Ashman, H. G. 1969. On the role ofS-adenosyl-l-methionine in the biosynthesis of spermidine by rat prostate.J. Biol. Chem. 244:682–693.PubMedGoogle Scholar
  28. 28.
    Metcalf, B. W., andCasara, P. 1975. Regiospecific 1,4-addition of a propargylic anion: A general synthon for 2-substituted propargylamines as potential catalytic irreversible enzyme inhibitors.Tetrahedron Lett. 3337–3340.Google Scholar
  29. 29.
    Jung, M. J., andSeiler, N. 1978. Enzyme activated irreversible inhibitors ofl-ornithine: 2-oxoacid aminotransferase.J. Biol. Chem. 25:7431–7439.Google Scholar
  30. 30.
    Jung, M. J., Metcalf, B. W., Lippert, B., andCasara, P. 1978. Mechanism of inhibition of bacterial glutamate decarboxylase by 4(R)-aminohex-5-ynoic acid.Biochemistry 17:2628–2632.PubMedGoogle Scholar
  31. 31.
    Rando, R. R. 1977. Mechanism of the irreversible inhibition of γ-aminobutyric acid-α-ketoglutaric acid transaminase by the neurotoxin gabaculine.Biochemistry 16:4604–4610.PubMedGoogle Scholar
  32. 32.
    McCann, P. P., Hornsperger, J.-M., andSeiler, N. 1978. Regulatory interrelations between GABA and polyamines. II. Effect of GABA on ornithine decarboxylase and putrescine levels in cell culture.Neurochem. Res. 4:437–447.Google Scholar
  33. 33.
    Strecker, H. J. 1965. Purification and properties of ornithine δ-transaminase.J. Biol. Chem. 240:1225–1230.Google Scholar
  34. 34.
    Morris, D. R., andFillingame, R. H. 1974. Regulation of aminoacid decarboxylation.Ann. Rev. Biochem. 43:303–305.PubMedGoogle Scholar
  35. 35.
    Pajunen, A. E. I., Hietala, O. A., Virransalo, E. L., andPiha, R. S. 1978. Ornithine decarboxylase and adenosylmethionine decarboxylase in mouse brain—Effect of electrical stimulation.J. Neurochem. 30:281–283.PubMedGoogle Scholar
  36. 36.
    Deckardt, K., Pujol, J. F., Belin, M. F., Seiler, N., andJouvet, M. 1978. Increase of ornithine decarboxylase activity elicited by reserpine in the peripheral and central monoaminergic systems of the rat.Neurochem. Res. 3:745–753.PubMedGoogle Scholar
  37. 37.
    Heby, O., andRussell, D. H. 1974. Effects of methylglyoxal-bis-guanyl-hydrazone on polyamine metabolism in spleens of mice with disseminated L1210 lymphoid leukemia.Cancer Res. 34:886–892.PubMedGoogle Scholar
  38. 38.
    Hölttä, I., Hannonen, P., Pispa, J., andJänne, J. 1973. Effect of methylglyoxal-bis-guanyl-hydrazone on polyamine metabolism in normal and regnerating rat liver and rat thymus.Biochem. J. 136:669–676.PubMedGoogle Scholar
  39. 39.
    Mamont, P. S., Duchesne, M. C., Grove, J., andTardif, C. 1978. Initial characterization of a HTC cell variant partially resistant to the antiproliferative effect of ornithine decarboxylase inhibitors.Exp. Cell Res. 115:387–393.PubMedGoogle Scholar
  40. 40.
    Prakash, N. J., Schechter, P., Grove, J., andKoch-Weser, J. 1978. Effect of α-difluoromethyl ornithine, an enzyme-activated irreversible inhibitor of ornithine decarboxylase, on L1210 leukemia in mice.Cancer Res. 38:3059–3062.PubMedGoogle Scholar
  41. 41.
    Bachrach, U. 1977. Induction ofS-adenosyl-l-methionine decarboxylase in glioma and neuroblastoma cells.FEBS Lett. 75:201–204.PubMedGoogle Scholar
  42. 42.
    Bachrach, U. 1975. Cyclic AMP-mediated induction of ornithine decarboxylase of glioma and neuroblastoma cells.Proc. Natl. Acad. Sci. USA 72:3087–3091.PubMedGoogle Scholar
  43. 43.
    Russell, D. H., Byus, C. V., andManen, C. A., 1976. Proposed model of major sequential biochemical events of a trophic response.Life Sci. 19:1297–1306.PubMedGoogle Scholar
  44. 44.
    Insel, P. A., andFenno, J. 1978. Cyclic AMP-dependent protein kinase mediates a cyclic AMP-stimulated decrease in ornithine andS-adenosylmethionine decarboxylase activities.Proc. Natl. Acad. Sci. USA 75:862–865.PubMedGoogle Scholar
  45. 45.
    Seiler, N., andWiechmann, M. 1969. Zum Vorkommen der γ-Aminobuttersäure in tierischem Gewebe.Hoppe-Seylers Z. Physiol. Chem. 350:1493–1500.PubMedGoogle Scholar
  46. 46.
    Okada, Y., Taniguchi, H., Shimada, C., andKurosawa, F. 1975. High concentration of γ-aminobutyric acid (GABA) in the Langerhans's islets of the pancreas.Proc. Jpn. Acad. Sci. 51:760–762.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Nikolaus Seiler
    • 1
  • Gerd Bink
    • 1
  • Jeffrey Grove
    • 1
  1. 1.Centre de Recherche Merrel InternationalStrasbourgFrance

Personalised recommendations