Skip to main content
Log in

Studies on the turnover and subcellular localization of membrane gangliosides in cultured neuroblastoma cells

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22h in the presence ofd-[1-3H]galactose or [3H]GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipidsialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellular membrane fractions studied was recovered from plasma membrane and only 10–15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous [3H]GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D'Souza, C. J. M., Clarke, J. T. R., Cook, H. W., andSpence, M. W. 1983 Studies on the turnover of endogenous choline-containing phospholipids of cultured neuroblastoma cells. Biochim. Biophys. Acta 752:467–473.

    Google Scholar 

  2. D'Souza, C., Clarke, J. T. R., Cook, H. W., andSpence, M. W. 1983. Phospholipid transfer protein-mediated incorporation and subcellular distribution of exogenous phosphatidylcholine and sphingomyelin in cultured neuroblastoma cells. Biochim. Biophys. Acta 729:1–8.

    Google Scholar 

  3. Dawson, G., Kemp, S. F., Stoolmiller A. C., andDorfman, A. 1971. Biosynthesis of glycosphingolipids by mouse neuroblastoma (NB14A), rat glia (RGC-6) and human glia (CHB-4) in cell culture. Biochem. Biophys. Res. Commun. 44:687–694.

    Google Scholar 

  4. Yogeeswaran, G., Murray, R. K., Pearson, M. L., Sanwal, B. D., McMorris, F. A. andRuddle, F. H. 1973. Glycosphingolipids of clonal lines of mouse neuroblastoma and neuroblastema X L cell hydrids. J. Biol. Chem. 248:1231–1239.

    Google Scholar 

  5. Ciesielski-Treska, J., Robert, J., Rebel, G., andMandel, P. 1977. Gangliosides of active and inactive neuroblastoma clones. Differentiation 8:31–37.

    Google Scholar 

  6. Bremer, E. G., Sapirstein, V. S., Savage, T., andMcCluer, R. H. 1982. Effects of divalent cations on the glycolipids from cultured neuroblastoma cells. J. Neurochem. 38:333–341.

    Google Scholar 

  7. Schengrund, C.-L., andRepman, M. A. 1982. Density-dependent changes in gangliosides and sialidase activity of murine neuroblastoma cells. J. Neurochem. 39:940–947.

    Google Scholar 

  8. Moskal, J. R., Gardner, D. A., andBasu, S. 1974. Changes in glycolipid glycosyl-transferases and glutamate decarboxylase and their relationship to differentiation in neuroblastoma cells. Biochem. Biophys. Res. Commun. 61:751–758.

    Google Scholar 

  9. Kemp, S. F., andStoolmiller, A. C. 1976. Studies on the biosynthesis of glycosphingolipids in cultured mouse neuroblastoma cells: characterization and acceptor specifications of N-acetylneuraminyl- and N-acetylgalactosaminyltransferases. J. Neurochem. 27:723–732.

    Google Scholar 

  10. Kemp, S. F., andStoolmiller, A. C. 1976. Biosynthesis of glycosphingolipids in cultured mouse neuroblastoma cells. Precursor-product relationships among sialoglycosphingolipids. J. Biol. Chem. 251:7626–7631.

    Google Scholar 

  11. Duffard, R. O., Fishman, P. H., Bradley, R. M., Lauter, C. J., Brady, R. O., andTrams, E. G. 1977. Ganglioside composition and biosynthesis in cultured cells derived from CNS. J. Neurcohem. 28:1161–1166.

    Google Scholar 

  12. Dawson, G. 1979. Regulation of glycosphingolipid metabolism in mouse neuroblastoma and glioma cell lines. J. Biol. Chem. 254:155–162.

    Google Scholar 

  13. Dawson, G., McLawhon, R., andMiller, R. J. 1980. Inhibition of sialoglycosphingolipid (ganglioside) biosynthesis in mouse clonal lines N4TG1 and NG108-15 by β-endorphin, enkephalins and opiates. J. Biol. Chem. 255:129–137.

    Google Scholar 

  14. Miller-Podraza, H., Bradley, R. M., andFishman, P. H. 1982. Biosynthesis and localization of gangliosides in cultured cells. Biochemistry 21:3260–3265.

    Google Scholar 

  15. Miller-Podraza, H., andFishman, P. H. 1982. Translocation of newly synthesized gangliosides to the cell surface. Biochemistry 21:3265–3270.

    Google Scholar 

  16. Fishman, P. H., andBrady, R. O. 1976. Biosynthesis and function of gangliosides. Science 194:906–915.

    Google Scholar 

  17. Morre, D. J., Kartenbeck, J., andFranke, W. W. 1979. Membrane flow and interconversions among endomembranes. Biochim. Biophys. Acta 559:71–152.

    Google Scholar 

  18. Pearse, B. M. F. andBretscher, M. S. 1981. Membrane recycling by coated vesicles. Ann. Rev. Biochem. 50:85–102.

    Google Scholar 

  19. Spence, M. W., Wakkary, J., Clarke, J. T. R., andCook, H. W. 1982. Localization of neutral, magnesium-stimulated sphingomyelinase in plasma membrane of cultured neuroblastoma cells. Biochim. Biophys. Acta 719:162–164.

    Google Scholar 

  20. Skrivanek, J. A., Ledeen, R. W., Margolis, R. U., andMargolis, R. K. 1973. Gangliosides associated with microsomal subfractions of brain: comparison with synaptic plasma membranes. J. Neurobiol. 13:95–106.

    Google Scholar 

  21. Ledeen, R. W., Yu, R. K., andEng, L. F. 1973. Gangliosides of human myelin: sialosylgalactosylceramide (G7) as a major component. J. Neurochem. 21:829–839.

    Google Scholar 

  22. Svennerholm, L. 1957. Quantitative estimation of sialic acids. 2. Colorimetric resorcinol-hydrochloric acid method. Biochim. Biophys. Acta 24:604–611.

    Google Scholar 

  23. Miettinen, T., andTakki-Luukkainen, I. T. 1959. Use of butylacetate in determination of sialic acid. Acta Chem. Scand. 13:856–858.

    Google Scholar 

  24. MacMillan, V. H., andWherrett, J. R. 1969. A modified procedure for the analysis of mixtures of tissue gangliosides. J. Neurochem. 16:1621–1624.

    Google Scholar 

  25. Novak, A., Lowden, J. A., Gravel, Y. L., andWolfe, L. S. 1979. Preparation of radiolabeled GM2 and GA2 gangliosides. J. Lipid Res. 20:678–681.

    Google Scholar 

  26. Winterbourn, C. C. 1971. Separation of brain gangliosides by column chromatography on DEAE-cellulose. J. Neurochem. 18:1153–1155.

    Google Scholar 

  27. Moss, J., Fishman, P. H., Manganiello, V. C., Vaughan, M., andBrady, R. O. 1976. Functional incorporation of ganglioside into intact cells: induction of choleragen responsiveness. Proc. Natl. Acad. Sci. USA 73:1034–1037.

    Google Scholar 

  28. Moss, J., Manganiello, V. C. andFishman, P. H. 1977. Enzymatic and chemical oxidation of gangliosides in cultured cells: effects of choleragen. Biochemistry 16:1876–1881.

    Google Scholar 

  29. O'Keefe, E., andCuatrecasas, P. 1977. Persistence of exogenous inserted ganglioside on the cell surface of cultured cells. Life Sci. 21:1649–1654.

    Google Scholar 

  30. Callies, R., Schwarzmann, G., Radsak, K., Siegert, R., andWiegandt, H. 1977. Characterization of the cellular binding of exogenous gangliosides. Eur. J. Biochem. 80:425–432.

    Google Scholar 

  31. Radsak, K., Schwarzmann, G., andWiegandt, H. 1982. Studies on the cell association of exogenously added sialoglycolipids. Hoppe-Seyler's Z. Physiol. Chem. 363:263–272.

    Google Scholar 

  32. Fishman, P. H., Bradley, R. H., Hom, B. E., andMoss, J. 1983. Uptake and metabolism of exogenous gangliosides by cultured cells: effect of choleragen on the turnover on GM1. J. Lipid Res. 24:1002–1011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, J.T.R., Cook, H.W. & Spence, M.W. Studies on the turnover and subcellular localization of membrane gangliosides in cultured neuroblastoma cells. Neurochem Res 10, 427–438 (1985). https://doi.org/10.1007/BF00964610

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964610

Keywords

Navigation