Advertisement

Neurochemical Research

, Volume 10, Issue 3, pp 387–396 | Cite as

γ-Hydroxybutyrate uptake by rat brain striatal slices

  • V. Hechler
  • J. J. Bourguignon
  • C. G. Wermuth
  • P. Mandel
  • M. Maitre
Original Articles

Abstract

γ-Hydroxybutyrate uptake by rat brain striatal slices was studied. The uptake was saturable with aKm of 702±107.10−6M. γ-Hydroxybutyrate uptake was sodium dependent and inhibited by the omission of potassium. In addition, the effect of ouabain suggests that the transport is dependent on a cation gradient. Several analogues of γ-hydroxybutyrate inhibit the transport system. GABA has no significant effect. This energy and cation dependent transport system is in favor of a transmitter or modulator role of γ-hydroxybutyrate in the rat brain striatum.

Keywords

Sodium Potassium Transport System Ouabain Modulator Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olpe, H. R., andKoella, W. P. 1979. Inhibition of nigral and neocortical cells by γ-hydroxybutyrate: a microiontophoretic investigation. Eur. J. Pharmacol. 53:359–364.Google Scholar
  2. 2.
    Hosli, L., Hosli, E., Lehmann, R., Schneider, J., andBorner, M. 1983. Action of γ-hydroxybutyrate and GABA on neurones of cultured rat central nervous system. Neurosci. Lett. 37:257–260.Google Scholar
  3. 3.
    Weissmann-Nanopoulos, D., Rumigny, J. F., Mandel, P., Vincendon, G., andMaitre, M. 1982. Immunocytochemical localization in rat brain of the enzyme that synthesizes γ-hydroxybutyric acid. Neurochem. Intern. 4:523–529.Google Scholar
  4. 4.
    Benavides, J., Rumigny, J. F., Bourguignon, J. J., Wermuth, C. G., Mandel, P., andMaitre, M. 1982a. A high affinity, Na+ dependent uptake system for γ-hydroxybutyrate in membrane vesicles prepared from rat brain. J. Neurochem. 38:1570–1575.Google Scholar
  5. 5.
    Benavides, J., Rumigny, J. F., Bourguignon, J. J., Cash, C., Wermuth, C. G., Mandel, P., Vincendon, G., andMaitre, M. 1982b. High affinity binding sites for γ-hydroxybutyric acid in rat brain. Life Sci. 30:953–961.Google Scholar
  6. 6.
    Maitre, M., Rumigny, J. F., Cash, C., andMandel, P. 1983a. Subcellular distribution of γ-hydroxybutyrate binding sites in rat brain. Principal localization in the synaptosomal fraction. Biochem. Biophys. Res. Commun. 110:262–265.Google Scholar
  7. 7.
    Maitre, M., Rumigny, J. F., andMandel, P. 1983b. Positive cooperativity in high affinity binding sites for γ-hydroxybutyric acid in rat brain. Neurochem. Res. 8:113–120.Google Scholar
  8. 8.
    Maitre, M., Cash, C., Weissmann-Nanopoulos, D., andMandel, P. 1983. Depolarization evoked release of γ-hydroxybutyrate from rat brain slices. J. Neurochem. 41:287–290.Google Scholar
  9. 9.
    Maitre, M., andMandel, P. 1984. Propriétés permettant d'attribuer au γ-hydroxybutyrate la qualité de neurotransmetteur du système nerveux central. C. R. Acad. Sci., Paris 298:341–345.Google Scholar
  10. 10.
    Snead, O. C., andMorley, B. J. 1981. Ontogeny of γ-hydroxybutyric acid. I. Regional concentration in developing rat, monkey and human brain. Dev. Brain Res. 1:579–589.Google Scholar
  11. 11.
    Gold, B. I., andRoth, R. H. 1977. Kinetics of in vivo conversion of γ-[3H]aminobutyric acid to γ-[3H]hydroxybutyric acid by rat brain. J. Neurochem. 28:1069–1073.Google Scholar
  12. 12.
    Munson, P. J., andRodbard, D. 1980. A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107:220–239.Google Scholar
  13. 13.
    Booher, J., andSensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105.Google Scholar
  14. 14.
    Curtis, D. R., andJohnston, G. A. R. 1974. Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69:97–188.Google Scholar
  15. 15.
    Wheeler, D. D. 1980. Sodium dependence of GABA transport in rat hypothalamic synaptosomes. J. Neurosci. Res. 5:323–337.Google Scholar
  16. 16.
    Schousboe, A., Lisy, V., andHertz, L. 1976. Post-natal alterations in effects of potassium on uptake and release of glutamate and GABA in rat brain cortex slices. J. Neurochem. 26:1023–1027.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. Hechler
    • 1
  • J. J. Bourguignon
    • 2
  • C. G. Wermuth
    • 2
  • P. Mandel
    • 1
  • M. Maitre
    • 1
  1. 1.Centre de Neurochimie du CNRS and INSERM U 44Strasbourg CedexFrance
  2. 2.Laboratoire de Pharmacochimie Moléculaire (ERA 393 du CNRS)Strasbourg CedexFrance

Personalised recommendations