Skip to main content
Log in

Long-chain acyl CoA synthetase in microsomes from rat brain gray matter and white matter

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Long-chain acyl coenzyme A (CoA) synthetase in homogenates and microsomes from rat brain gray and white matter was studied. The formation of the thioesters of CoA was studied upon addition of [1-14C]-labeled fatty acids. The maximal activities were seen with linoleic acid, followed by arachidonic, palmitic, and docosahexaenoic acids in both gray and white matter homogenates and microsomes. The specific activities in microsomes were 3–5 times higher than in homogenates. The presence of Triton X-100 in the assay system enhanced the activity of long-chain acyl CoA synthetase in homogenates. The effect was more pronounced in palmitic and docosahexaenoic acid activation. The apparentK m values andV max values for palmitic and docosahexaenoic acids were much lower than for linoleic and arachidonic acids. The presence of Triton X-100 in the medium caused a definite decrease in the apparentK m and Vmax values for all the fatty acid except palmitic acid in which case the reverse was true. There were no significant differences observed in the kinetic measurements between gray and white matter microsomes. These findings are similar to those resulting from the known interference of Triton X-100 in the measurement of kinetic variables of long-chain acyl CoA synthetase of liver microsomes. In this work, no correlation was observed between the fatty acid composition of gray and white matter and the capacity of these tissues for the activation of different fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Groot, P. H. E., Scholte, H. R., andHulsmann, W. C. 1976. Fatty acid activation: specificity, localization, and function, pages 75–126,in Paoletti R., andKretchevsky D. (eds.), Advances in Lipid Research, Vol. 14, Academic Press, New York.

    Google Scholar 

  2. Maes, E., andBartana, J. 1977. Rat liver microsomal palmitoyl CoA synthetase: subunit structure. Biochim. Biophys. Acta 480:527–530.

    Google Scholar 

  3. Normann, P. T., Thomassen, M. S., Christiansen, E. N. andFlatmark, T. 1981. Acyl CoA synthetase activity of rat liver microsomes. Biochim. Biophys. Acta 664:416–427.

    Google Scholar 

  4. Tanaka T., Hosaka K., Hoshimaru M. andNuma S. 1979. Purification and properties of long-chain acyl coenzyme A synthetase from rat liver. Eur. J. Biochem. 98:165–172.

    Google Scholar 

  5. Murphy, M. G., andSpence, M. W. 1980. Long chain fatty acid: CoA ligase in rat brain in vitro: A comparison of activities with oleic and cis-vaccenic acids. J. Neurochem. 34:367–372.

    Google Scholar 

  6. Murphy, M. G., andSpence, M. W. 1982 Acid: Coenzyme A ligase in brain: Fatty acid specificity in cellular and subcellular fractions. J. Neurochem. 38:675–679.

    Google Scholar 

  7. Cotman, C., Blank, M. L., Moehl, A., andSnyder F. 1969. Lipid composition of synaptic plasma membranes isolated from rat brain by zonal centrifugation. Biochemistry 8:4606–4612.

    Google Scholar 

  8. Breckenridge, W. C., Gombos G., andMorgan, I. G. 1971. The docosahexaenoic acid of the phospholipids of synaptic membranes, vesicles and mitochondria. Brain Res. 33:581–583.

    Google Scholar 

  9. Butler, M., andAbood, L. G. 1982. Use of phospholipase A to compare phospholipid organization in synaptic membranes, myelin and liposomes. J. Membrane Biol. 66:1–7.

    Google Scholar 

  10. Foot, M., Corez, T. F., andClandinin, T. M. 1982. Influence of dietary fat on the lipid composition of rat brain synaptosomal and microsomal membranes. Biochem. J. 208:631–640.

    Google Scholar 

  11. Bazan, N. G. 1970. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218:1–10.

    Google Scholar 

  12. Bazan, N. G., andRakowski, H. 1970. Increased levels of brain free fatty acids after electroconvulsive shock. Life Sci. 9:501–507.

    Google Scholar 

  13. Bazan, N. G., Rodriguez De Turco, E. B., andMorelli De Liberti, S. M., 1982. Arachidonic acid and arachidonoyl-diglycerols increase in rat cerebrum in bicuculline-induced status epilepticus. Neurochem. Res. 7:831–843.

    Google Scholar 

  14. Siesjo, B. K., Ingrar, M., andWesterberg, E. 1982. The influence of bicuculline induced seizures and free fatty acid concentrations in cerebral cortex, hippocampus and cerebellum. J. Neurochem. 39:796–802.

    Google Scholar 

  15. Bazan, N. G., Politi E., andRodriguez De Turco, E. B. 1983. Endogenous pools of arachidonic acid-enriched membrane lipids in cryogenic brain, pages 203–212,in Go K. G. andBaethmann A., (eds.), Recent Progress in the Study of Brain Edema, Plenum Press, New York.

    Google Scholar 

  16. Reddy, T. S. andBazan, N. G. 1984. Activation of polyunsaturated fatty acids by rat tissues in vitro. Lipids 19:987–989.

    Google Scholar 

  17. Aas, M. 1971. Organ and subcellular distribution of fatty acid activating enzymes in the rat. Biochim. Biophys. Acta 231:32–47.

    Google Scholar 

  18. Pande, S. B., andMead, J. F. 1968. Distribution of long-chain acyl fatty acid activating enzymes in rat tissues. Biochim. Biophys. Acta 152:636–638.

    Google Scholar 

  19. O'Brien, J. S., andSampson, E. L. 1965. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6:545–551.

    Google Scholar 

  20. Svennerholm, L. 1968. Distribution and fatty acid composition of phosphoglycerides in normal human brain. J. Lipid Res. 9:570–579.

    Google Scholar 

  21. Kishimoto, Y., Agranoff, B. W., Radin, N. S., andBurton, R. M. 1969. Comparison of the fatty acids of lipids of subcellular brain fractions. J. Neurochem. 16:397–404.

    Google Scholar 

  22. Ramakrishnan, C. V., andReddy, T. S. 1981. Effects of nutritional stress on the development of brain lipids. Baroda J. Nutr. 8:31–35.

    Google Scholar 

  23. Reddy, T. S., andHorrocks, L. A. 1982. Effects of neonatal undernutrition on the lipid composition of gray matter and white matter in rat brain. J. Neurochem. 38:601–605.

    Google Scholar 

  24. Reddy, T. S., Rajalakshami, R., andRamakrishnan, C. V. 1982. Effects of nutritional rehabilitation on the content and lipid composition of brain gray and white matter of neonatally undernourished rats. J. Neurochem. 39:1297–1301.

    Google Scholar 

  25. Reddy, T. S., andBazan, N. G. 1983. Kinetic properties of arachidonoyl-coenzyme A synthetase in rat brain microsomes. Arch. Biochem. Biophys. 226:125–133.

    Google Scholar 

  26. Banis, R. J., andTove, S. B. 1974. Solubilization of a long-chain fatty acyl CoA synthetase from chicken adipose tissue microsomes. Biochim. Biophys. Acta 348:210–220.

    Google Scholar 

  27. Wilson, D. B., Prescott, S. M., andMajerus, P. W. 1982. Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J. Biol. Chem. 257:3510–3515.

    Google Scholar 

  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  29. Sun, G. Y. 1973. Phospholipids and acyl groups in subcellular fractions from human cerebral cortex. J. Lipid Res. 14:656–663.

    Google Scholar 

  30. Rodriguez De Turco, E. B., Morelli De Liberti, S. A., andBazan, N. G. 1983. Stimulation of free fatty acid and diacylglycerol accumulation in cerebrum and cerebellum during bicuculline-induced status epilepticus. Effect of pretreatment with L-methyl-p-tyrosine and p-chlorophenylalanine. J. Neurochem. 40:252–259.

    Google Scholar 

  31. Cohen, S. R., andBerenson, J. 1978. The in vivo incorporation of linolenic acid into neuronal and glial cells and myelin. J. Neurochem. 30:661–669.

    Google Scholar 

  32. Sun, G. Y. 1979. On the membrane phospholipids and their acyl group profiles of adrenal gland. Lipids 12:661–665.

    Google Scholar 

  33. Sun, G. Y., andHorrocks, L. A. 1973. Metabolism of palmitic acid in the subcellular fractions of mouse brain. J. Lipid Res. 14:206–214.

    Google Scholar 

  34. Singh, I., Kang, M. S., andPhillips, L. A. 1982. Ligonceroyl: CoA ligase activity in rat brain microsomal fraction. Fed. Proc. 41:1192.

    Google Scholar 

  35. Marcel, Y. L., andSuzue, G. 1972. Kinetic studies on the specificity of long chain acyl CoA synthetase from rat liver microsomes. J. Biol. Chem. 247:4433–4436.

    Google Scholar 

  36. Suzue, G., andMarcel Y. L. 1972. Specificity of long-chain acyl coenzyme A synthetase from rat liver microsomes. Influence of the position of double bonds octadecadienoic acids. Biochemistry 111:1702–1708.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, T.S., Bazan, N.G. Long-chain acyl CoA synthetase in microsomes from rat brain gray matter and white matter. Neurochem Res 10, 377–386 (1985). https://doi.org/10.1007/BF00964606

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964606

Keywords

Navigation