Advertisement

Neurochemical Research

, Volume 10, Issue 2, pp 283–295 | Cite as

The effects of lubrol WX on brain membrane Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ uptake activity following acute and chronic ethanol

  • D. H. Ross
  • K. M. Garrett
  • H. L. Cardenas
Original Articles

Abstract

  1. 1.

    Acute administration of ethanol (2.5 gm/kg, i.p.) to rats inhibits the cytosolic buffering of Ca2+ in nerve terminals.

     
  2. 2.

    Ca2+ ATPase and ATP-dependent Ca2+ uptake are both inhibited 30 min after a single dose of ethanol.

     
  3. 3.

    Chronic ethanol administration (6%, 14 days) did not inhibit Ca2+ ATPase but significantly stimulated ATP-dependent Ca2+ uptake.

     
  4. 4.

    Lubrol WX treatment of acute ethanolicmembranes reverses the inhibition of Ca2+ ATPase seen following ethanol.

     
  5. 5.

    Lubrol WX treatment of chronic ethanolic membranes prevents the increase in ATP-dependent Ca2+ uptake seen in ethanolic membranes.

     
  6. 6.

    Both acute and chronic ethanol-induced changes in Ca2+ transport within nerve teminals may involve lipid-dependent parameters of the membrane which may underlie neuronal adaptation.

     

Keywords

Single Dose Nerve Terminal Acute Administration Uptake Activity Chronic Ethanol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seeman, 1972. The membrane actions of anesthetics and tranquilizers. Pharm. Rev. 24:583–655.PubMedGoogle Scholar
  2. 2.
    Michaelis, E. K., andMichaelis, M. L. 1983. Physio-chemical interactions between alcohol and biological membranes. Recent Adv. in Alcohol and Drug Problems 7:127–173.Google Scholar
  3. 3.
    Chin, J. H., andGoldstein, D. B. 1977. Affects of low concentrations of ethanol on the fluidity of spin labeled erythrocyte and brain membranes. Mol. Pharmacol. 13:435–441.PubMedGoogle Scholar
  4. 4.
    Rottenberg, H., Robertson, D. E., andRubin, E. 1980. Effects of ethanol on the temperature dependence of respiration and ATPase activities of rat liver mitochondria. Lab. Invest. 42:318–323.PubMedGoogle Scholar
  5. 5.
    Waring, A. J., Rottenberg, H., Ohnishi, T., andRubin, E. 1981. Membranes and phospholipids of liver mitochondria from chronic alcoholic rats are resistant to membrane disordering by alcohol. Proc. Natl. Acad. Sc. 78:2582.Google Scholar
  6. 6.
    McCreary, M. J., andHunt, W. A. 1978. Physio-chemical correlates of alcohol intoxication. Neuropharmacology 17:463–467.PubMedGoogle Scholar
  7. 7.
    Lyon, R. C., McComb, J. A., Schreurs, J., andGoldstein, D. B. 1981. A relationship between alcohol intoxication and the disordering of brain membranes by a series of short chain alcohols. J. Pharmacol. Exp. Ther. 218:669–675.PubMedGoogle Scholar
  8. 8.
    Harris, R. A., andSchroeder, F. 1981. Ethanol and the physical properties of brain membranes: Fluorescence studies. Mol. Pharm. 20:128–137.Google Scholar
  9. 9.
    Pang, K-Y. Y., andMiller, K. W. 1978. Cholesterol modulates the effects of membrane perturbers in phospholized vesicles and biomembranes. Biochem. Biophys. Acta 511:1–9.PubMedGoogle Scholar
  10. 10.
    Johnson, D. A., Lee, N. M., Cooke, R., andLoh, H. H. 1979. Ethanol-induced fluidization of brain lipid bilayers require the presence of cholesterol in membranes for expression of tolerance. Mol. Pharm. 15:739–746.Google Scholar
  11. 11.
    Leventhal, M., andTabakoff, B. 1980. Sodium-potassium activated adenosine triphosphatase activity as a measure of neuronal membrane characteristics in ethanol-tolerant mice. J. Pharmacol. Exp. Therap. 212:315–319.Google Scholar
  12. 12.
    Tadda, M., Yamamoto, T., andTonomura, Y. 1978. Molecular mechanisms of active calcium transport by sarcoplasmic reticulum. Physiol. Rev. 58:2–79.Google Scholar
  13. 13.
    Hara, K., andKasai, M. 1977. The mechanism of increase in ATPase activity of sarcoplasmic reticulum vesicles treated with N-alcohols. J. Biochem. 82:1005–1017.PubMedGoogle Scholar
  14. 14.
    Garrett, K. M., andRoss, D. H. 1983. Effects of in vivo ethanol administration on Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ uptake activity in synaptosomal membranes. Neurochem. Res. 8:1013–1027.PubMedGoogle Scholar
  15. 15.
    Ross, D. H., andCardenas, H. L. 1983. Calmodulin stimulation of Ca2+-dependent ATP hydrolysis and ATP-dependent Ca2+ transport in synaptic membranes. J. Neurochem. 41:161–171.PubMedGoogle Scholar
  16. 16.
    Sorenson, R. G., andMahler, H. F. 1981. Calcium-stimulated adenosine triphosphates in synaptic membranes. J. Neurochem. 37:1407–1418.PubMedGoogle Scholar
  17. 17.
    Michaelis, E. K., Michaelis, M. L., Chang, H. H., andKitos, T. E. 1983. High affinity Ca2+-stimulated Mg2+-dependent ATPase in rat brain synaptosomes, synaptic membranes and microsomes. J. Biol. Chem. 258:6101–6108.PubMedGoogle Scholar
  18. 18.
    Madden, T. D., Chapman, D., andQuinn, P. J. 1979. Cholesterol modulates activity of calcium-dependent ATPase of the sarcoplasmic reticulum. Nature 279:538–541.PubMedGoogle Scholar
  19. 19.
    Madden, T. D., King, M. D., andQuinn, P. J. 1981. The modulation of Ca2+ ATPase activity of sarcoplasmic reticulum by membrane cholesterol: The effect of enzyme coupling. Biochim. Biophys. Acta 641:265–269.PubMedGoogle Scholar
  20. 20.
    Cotman, C. W., andMatthews, D. A. 1971. Synaptic plasma membranes from rat brain synaptosomes: Isolation and partial characterization. Biochim. Biophys. Acta 249:380–394.PubMedGoogle Scholar
  21. 21.
    Bartfai, T. 1979. Preparation of metal-chelate complexes and the design of steadystate kinetic experiments involving metal nucleotide complexes. Adv. Cycl. Nucleotide Res. 10:219–242.Google Scholar
  22. 22.
    Robinson, J. D. 1978. Calcium stimulated phosphorylation of a brain (Ca2++Mg2+)-ATPase preparation. FEBS Letters 87:261–264.PubMedGoogle Scholar
  23. 23.
    Blaustein, M. P., Ratzlaff, R. W., Kendrick, N. C., andSchweitzer, E. S. 1978. Calcium buffering in presynaptic nerve terminals. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J. Gen. Physiol. 72:15–41.PubMedGoogle Scholar
  24. 24.
    Blaustein, M. P., Ratzlaff, R. W., andSchweitzer, E. S. 1978. Calcium buffering in presynaptic nerve terminals II. Kinetic properties of nonmitochondrial Ca2+ sequestration mechanisms. J. Gen. Physiol. 72:43–66, 1978.PubMedGoogle Scholar
  25. 25.
    McGraw, C. F., Somlyo, A. V., andBlaustein, M. P. 1980. Localization of calcium in presynaptic nerve berminals. An ultrastructural and electron microprobe analysis. J. Cell Biol. 85:228–241.PubMedGoogle Scholar
  26. 26.
    Harris, R. A. 1981. Ethanol and pentobarbitol inhibition of intrasynaptosomal sequestration of calcium. Biochem. Pharma. 30:3209–3215.Google Scholar
  27. 27.
    Lin, D. C. 1980. Involvement of the lipid and protein components of (Na++K+)-adenosine triphosphatase in the inhibitory actions of alcohol. Biochem. Pharmacol. 29:771–775.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • D. H. Ross
    • 1
  • K. M. Garrett
    • 1
  • H. L. Cardenas
    • 1
  1. 1.Division of Molecular PharmacologyThe University of Texas Health Science CenterSan Antonio

Personalised recommendations