Skip to main content
Log in

Effects of short-term and prolonged aerogenic hypoxia on gamma-glutamyl transpeptidase activity in the brain, liver, and biological fluids of young rats

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Posthypoxic fluctuations in the levels of two excitatory amino acids, glutamate and aspartate, may be related to changes in mechanisms(s) which are responsible for their reuptake. As gamma-glutamyl transpeptidase (GGT) plays a role in mediating the uptake of glutamate and aspartate into various compartments of the brain, we studied changes in the activity of this enzyme in main regions of the brain in young and adult rats. We found a posthypoxic increase in bound GGT activity in some brain regions of 18-day-old animals after acute exposure, but no changes were observed after prolonged altitude hypoxia, with the exception of a decrease in cortical GGT activity. In contrast, acute hypoxia decreased GGT activity in the cortical capillaries to 59%, but prolonged hypoxic exposure was ineffective. However, the activity of soluble GGT in the cerebrospinal fluid of both groups of rats was several-times elevated in comparison with controls. At the same time, bound GGT activity was increased in the liver after acute or prolonged altitude hypoxia. The soluble GGT activity in plasma was only increased after prolonged exposure. Ninety days after prolonged hypoxic exposure the bound GGT activity was reduced in all brain regions to about 60–70% of controls (significantly higher in females than in males) as long-term developmental sequel from early postnatal hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cotman, C. W., Foster, A., andLanthorn, T. 1981. An overview of glutamate as a neurotransmitter. Pages 1–27,in Di Chiara, G. andGessa, G. L. (eds.), Glutamate as a Neurotransmitter, Raven Press, New York.

    Google Scholar 

  2. Jørgensen, M. B., andDiemer, N. H. 1982. Selective neuron loss after cerebral ischemia in the rat: Possible role of transmitter glutamate. Acta Neurol. Scandinav., 66:536–546.

    Google Scholar 

  3. Wolf, G., andKeilhoff, G. 1984. Kainate and glutamate neurotoxicity in dependence on the postnatal development with special reference to hippocampal neurons. Develop. Brain Res., 14:15–21.

    Google Scholar 

  4. McLennan, H. 1981. Excitatory amino acid receptors. Pages 19–27,in The Role of Peptides and Amino Acids as Neurotransmitters, Alan, R. Liss Inc., New York.

    Google Scholar 

  5. Sanderson, C., andMurphy, S. 1982. Glutamate binding in the rat cerebral cortex during ontogeny. Develop. Brain Res. 2:329–339.

    Google Scholar 

  6. Schousboe, A., andHertz, L. 1981. Role of astroglial cells in glutamate homeostasis. Pages 103–113,in Di Chiara, G. andGessa, G. L. (eds.), Glutamate as a Neurotransmitter, Raven Press, New York.

    Google Scholar 

  7. Koudelová, J., andTrojan, S. 1980. Effect of single and repeated aerogenic hypoxia on the content of amino acids in the rat brain. Physiol. Bohemoslov., 29:379–382.

    PubMed  Google Scholar 

  8. Erecińska, M., Nelson, D., Wilson, D. F., andSilver, I. A. 1984. Neurotransmitter amino acids in the CNS. I. Regional changes in amino acid levels in rat brain during ischemia and reperfusion. Brain Res., 304:9–22.

    PubMed  Google Scholar 

  9. Hájková, B., Lisý, V., Pearce, B., Murphy, S., andŠťastný, F. 1984. Glutamate and aspartate uptake into cultured neurones and glia is reduced in the presence of γ-glutamyl transpeptidase inhibitors. Page 119,in Vizi, E. S. andMagyar, K. (eds.) Regulation of Transmitter Function: Basic and Clinical Aspects, Akadémia Kiadó, Budapest.

    Google Scholar 

  10. Murphy, S., Lisý, V., andŠťastný, F. 1982. γ-glutamyl transpeptidase mediated uptake of some amino acids into brain. Page 49,in Abstracts of the 3rd Meeting of ISDN, Patras, Greece.

  11. Lisý, V., Šťastný, F., Murphy, S., andHájková, B. 1983. Glutamate uptake into cerebral cortex slices is reduced in the presence of a gamma-glutamyl transpeptidase inhibitor. Experientia, 39:111.

    PubMed  Google Scholar 

  12. Pajari, M. 1984. Properties of γ-glutamyltransferase in developing rat brain. Int. J. Devl. Neuroscience, 2:197–202.

    Google Scholar 

  13. Mršulja, B. B., Mršulja, B. J., Fujimoto, T., Klatzo, I., andSpatz, M. 1976. Isolation of brain capillaries: A simplified technique. Brain Res., 110:361–365.

    PubMed  Google Scholar 

  14. Lisý, V., Šťastný, F., andLodin, Z. 1979. Regional distribution of membrane-bound γ-glutamyl transpeptidase activity in mouse brain: Comparison with rabbit brain. Neurochem. Res., 4:747–753.

    PubMed  Google Scholar 

  15. Lisý, V., Šťastný, F., andLodin, Z. 1983. Gamma-glutamyl transpeptidase activity in isolated cells and various regions of the mouse brain during early development and aging. Physiol. Bohemoslov., 32:1–9.

    PubMed  Google Scholar 

  16. Varga, V., Somogyi, J., Langley, O. K., Ghandour, M. S., Gulyas, J., Török, K., Müllner, N., andMandel, P. 1982. Localization of γ-glutamyl transpeptidase in neural tissue. Pages 31–36,in Siest, G. andHeusghem, C. (eds.) Gammaglutamyltransferases: Advances in Biochemical Pharmacology, Vol. 3, Masson Publ, Paris.

    Google Scholar 

  17. Trojan, S. 1978. Adaptation of the central nervous system to oxygen deficiency during ontogenesis. Acta Univ. Carol. Med., Monographia, 85:5–180.

    Google Scholar 

  18. Alippi, R. M., Barceló, A. C., Río, M. E., andBozzini, C. E. 1983. Growth retardation in the early developing rat exposed to continuous hypobaric hypoxia. Acta Physiol. Latinoam., 33:1–5.

    Google Scholar 

  19. Garvey, D., Akana, S., Weisman, A., andTimiras, P. S. 1979. Alterations in adrenal growth and corticosteroid content in foetal and neonatal rats developing at high altitude. J. Endocr., 80:333–342.

    PubMed  Google Scholar 

  20. Varela, V., Houssay, A. B., andLopardo, M. I. 1982. Modification of the pituitarythyroid axis induced by hypobaric hypoxia. Acta Physiol. Latinoam., 32:53–58.

    Google Scholar 

  21. Blume, F. D. 1983. Metabolism and nutrition at altitude. Pages 311–316,in Hypoxia, Exercise and Altitude. Proceedings of the Third Banff International Hypoxia Symposium, Alan R. Liss Inc., New York.

  22. Fischer, J., Jílek, L., andTrojan, S. 1974. Qualitative and quantitative neurohistological changes produced in the rat brain by prolonged aerogenic hypoxia in early ontogeny. Physiol. Bohemoslov., 23:211–219.

    PubMed  Google Scholar 

  23. Pokorný, J., Trojan, S., andFischer, J. 1982. Changes in the structure of the rat hippocampus after prolonged postnatal hypoxia. Physiol. Bohemoslov., 31:193–202.

    PubMed  Google Scholar 

  24. Fischer, J., Langmeier, M., andTrojan, S. 1980. Changes in the length and width of the postsynaptic density, the width of the intersynaptic density and the synaptic cleft in the cerebral cortex synapses of rats exposed to prolonged aerogenic hypoxia during early ontogenesis. An electron microscopic morphometric study. Physiol. Bohemoslov., 29:561–568.

    PubMed  Google Scholar 

  25. Štípek, S., Trojan, S., Crkovská, J., andMartínek, J. 1980. Influence of repeated altitude hypoxia on early postnatal development of nucleic acid content in the rat prosencephalon. Pages 337–340,in Trojan, S., andŠťastný, F. (eds.), Ontogenesis of the Brain, Vol. 3, Charles University Press, Prague.

    Google Scholar 

  26. Shine, H. D., Hertz, L., De Vellis, J., andHaber, B. 1981. A fluorometric assay for γ-glutamyl transpeptidase: Demonstration of enzymatic activity in cultured cells of neural origin. Neurochem. Res., 6:453–463.

    PubMed  Google Scholar 

  27. Ghandour, M. S., Langley, O. K., andVarga, V. 1980. Immunohistological localization of γ-glutamyltranspeptidase in cerebellum at light and electron microscope levels. Neurosci. Lett., 20:125–129.

    PubMed  Google Scholar 

  28. Dux, E., Temesvár, P., Jóo, F., Ádam, G., Clementi, F., Dux, L., Hideg, J., andHossmann, K.-A. 1984. The blood-brain barrier in hypoxia: Ultrastructural aspects and adenylate cyclase activity of brain capillaries. Neuroscience, 12:951–958.

    PubMed  Google Scholar 

  29. Lossinsky, A. S., Vorbrodt, A. W., andWisniewski, H. M. 1983. Ultracytochemical studies of vesicular and canalicular transport structures in the injuried mammalian bloodbrain barrier. Acta Neuropath., 61:239–245.

    PubMed  Google Scholar 

  30. Wapnir, R. A., Mancusi, V. J., andGoldstein, L. A. 1982. Comparative ontogenesis of gamma-glutamyl transpeptidase in rat tissues. Experientia 38:647–648.

    PubMed  Google Scholar 

  31. Adjarov, D., Ivanov, E., Kerimova, M., andLozanova, L. 1983. Influence of fasting and of a high-protein diet on the activity of rat liver γ-glutamyl transferase. Experientia, 39:498–499.

    PubMed  Google Scholar 

  32. Barouki, R., Chobert, M.-N., Finidori, J., Billon, M.-C., andHanoune, J. 1983. The hormonal inducetion of gamma glutamyltransferase in rat liver and in a hepatoma cell line. Molec. Cell. Biochem., 53/54:77–88.

    Google Scholar 

  33. Šťastný, F., andLisý, V. 1981. Cortisol regulation of gamma-glutamyl transpeptidase in liver, choroid plexus, blood plasma and cerebrospinal fluid of developing chick embryo. Develop. Neurosci., 4:408–415.

    Google Scholar 

  34. Azizi, F. 1982. γ-glutamyl transpeptidase levels in thyroid disease. Arch. Intern. Med., 142:79–81.

    PubMed  Google Scholar 

  35. Tomášová, H., Zoban, P., Čepeláková, M., andMydlil, V. (in press). Activity of isoenzymes of gamma-glutamyl transferase in newborn and in the low-birth-weight infants. Biochem. Clin. Bohemoslovaca.

  36. Pokorný, J., andTrojan, S. 1983. Chronic changes in the receptive field of the pyramidal cells of the rat hippocampus after intermittent postnatal hypoxia. Physiol. Bohemoslov., 32:393–402.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šťastný, F., Lisý, V., Tomášová, H. et al. Effects of short-term and prolonged aerogenic hypoxia on gamma-glutamyl transpeptidase activity in the brain, liver, and biological fluids of young rats. Neurochem Res 10, 819–828 (1985). https://doi.org/10.1007/BF00964539

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964539

Keywords

Navigation