Advertisement

Neurochemical Research

, Volume 10, Issue 6, pp 789–796 | Cite as

Lack of effect of GABA on [3H]leucine incorporation into a rat oviduct ribosomal system

  • Luis M. Orensanz
  • Carmen Azuara
  • Inmaculada Fernández
Original Articles
  • 8 Downloads

Abstract

A ribosomal system for [3H]leucine incorporation was isolated from the rat oviduct in order to study the possible effect of GABA on [3H]leucine incorporation during the estrous cycle. The system showed an absolute requirement for Mg2+ and about 50% dependence on an energy source. Optimal [3H]leucine incorporation occurred under 3–6 mM Mg2+ and 100 mM K+ and was higher indiestrous-1 than in estrous or proestrous. GABA (10 mM) had no effect on [3H]leucine incorporation in any of the three estrous phase studied.

Keywords

Energy Source Leucine Estrous Cycle Absolute Requirement Leucine Incorporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martín del Río, R. 1981. γ-Aminobutyric acid system in rat oviduct. J. Biol. Chem. 256:9816–9819.PubMedGoogle Scholar
  2. 2.
    Erdö, S. L., Rosdy, B., andZsporny, L. 1982. Higher GABA concentrations in Fallopian tube than in brain of the rat. J. Neurochem. 38:1174–1176.PubMedGoogle Scholar
  3. 3.
    Apud, J. A., Tappaz, M. L., Negri-Cesi, P., Masotto, C., andRacagni, G. 1984. Biochemical and immunochemical studies of the GABAergic system in the rat Fallopian tube and ovary. J. Neurochem. 43:120–125.PubMedGoogle Scholar
  4. 4.
    Orensanz, L. M., andFernández, I. 1985. Letter-to-the-Editor: On the binding of3H-GABA to the rat oviduct. Neurosci. Lett., in press.Google Scholar
  5. 5.
    Erdö, S. L., andLapis, E. 1982. Presence of GABA receptors in rat oviduct. Neurosci. Lett. 33:275–279.PubMedGoogle Scholar
  6. 6.
    Erdö, S. L., László, A., Szporny, L., andZsolnai, B. 1983. High density of specific binding sites in the human Fallopian tube. Neurosci. Lett. 42:155–160.PubMedGoogle Scholar
  7. 7.
    Erdö, S. L. 1984. Alteration of GABA levels in ovary and Fallopian tube of the pregnant rat. Life Sci. 34:1879–1884.PubMedGoogle Scholar
  8. 8.
    Erdö, S. L., Riesz, M., Kárpáti, E., andSzporny, L. 1984. GABAB receptor-mediated stimulation of the contractility of isolated rabbit oviduct. Eur. J. Pharmacol. 99:333–336.PubMedGoogle Scholar
  9. 9.
    Fernández, I., Orensanz, L. M., andde Ceballos, M. L. 1984. GABA modulation of cholinergic transmission in rat oviduct. Life Sci. 34:357–364.Google Scholar
  10. 10.
    Erdö, S. L., Kiss, B., andSzporny, L. 1984. Comparative characterization of glutamate decarboxylase in crude homogenates of oviduct, ovary, and hypothalamus. J. Neurochem. 43:1532–1537.PubMedGoogle Scholar
  11. 11.
    Fernández, I., Martín del Río, R., andOrensanz, L. M. 1985. Surgical ablation of oviductal extrinsic innervation changes GABA levels in the rat Fallopian tube. Life Sci. 36:1733–1737.PubMedGoogle Scholar
  12. 12.
    Baxter, C. F. 1976. Effect of GABA on protein metabolism in the nervous system. Pages 89–102,in Roberts, E., Chase, T. N., andTower, D. B. (eds.), GABA in nervous system function, Raven Press, New York.Google Scholar
  13. 13.
    Campbell, M. K., Mahler, H. R., Moore, W. J., andTewari, S. 1966. Protein synthesis systems from rat brain. Biochemistry 5:1174–1184.PubMedGoogle Scholar
  14. 14.
    Goertz, B. 1979. Effect of γ-aminobutyric acid on cell-free protein synthesizing systems from mouse brain. Exp. Brain Res. 34:365–372.PubMedGoogle Scholar
  15. 15.
    Snodgrass, S. R. 1973. Studies on GABA protein synthesis. Brain Res. 59:339–348.PubMedGoogle Scholar
  16. 16.
    Hafez, E. S. E. 1970. Female reproductive organs. Pages 74–106,in Hafez, E. S. E. (ed.), Reproduction and breeding techniques for laboratory animals. Lea and Febiger, Philadelphia.Google Scholar
  17. 17.
    Hegab, M. H., andHafez, E. S. E. 1983. Physiology and dynamics of oviductal fluid. Int. J. Fertil. 28:10.Google Scholar
  18. 18.
    Oliphant, G., Reynolds, A. B., Smith, P. F., Ross, P. R., andMarta, J. S. 1984. Immunocytochemical localization and determination of hormone-induced synthesis of the sulfated oviductal glycoproteins. Biol. Reprod. 31:165–174.PubMedGoogle Scholar
  19. 19.
    Fando, J. L., andWasterlain, C. G. 1980. A simple, reproducible cell-free system for measuring brain protein synthesis. Neurochem. Res. 5:197–207.PubMedGoogle Scholar
  20. 20.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  21. 21.
    Martín del Río, R., andLatorre Caballero, A. 1980. Presence of γ-aminobutyric acid in rat ovary. J. Neurochem. 34:1584–1586.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Luis M. Orensanz
    • 1
  • Carmen Azuara
    • 1
  • Inmaculada Fernández
    • 1
    • 2
  1. 1.Departamento de InvestigaciónCentro Ramón y CajalMadridSpain
  2. 2.Departamento de BioquímicaC.U.I. Arcos de JalónMadridSpain

Personalised recommendations