Skip to main content
Log in

Modulation of specific [3H]phenytoin binding by benzodiazepines

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have shown that diazepam (ED50 2.4 μM), flunitrazepam (ED50 10.2 μM) and Ro5-4864 (ED50 5 μM) are able to enhance both total and specific [3H]phenytoin binding. Picrotoxin (IC50 1.43 μM) and chloride, either NaCl or KCl (IC50 42.4 μM) inhibit both the increase in total and specific binding of [3H]phenytoin, Ro 15-1788 does not. The optimum time for this enhancement was 3–4 hours. While the ED50's for the benzodiazepines are high their order of potency suggests that an involvement of both the “peripheral type” benzodiazepine receptor and the GABA-chloride ionophore complex is likely. Clonazepam (IC50 23 μM), oxazepam (IC50 12 μM) chlordiazepoxide (IC50 35 μM) and Ro8682-10, a convulsant benzodiazepine (IC50 16 μM) all inhibit both total and specific [3H]phenytoin binding. These effects were not blocked by chloride ions, picrotoxin or Ro 15-1788, and reached equilibrium within 45 minutes. This order of potency also parallels that for the ‘peripheral’ benzodiazepine receptor in rat brain. These data suggest the presence of a micromolar benzodiazepine receptor site which may play a role in the control of CNS excitability. Nitrazepam, medazepam, bromazepam and the tetralobenzodiazepines U38335, U42794, U43434, and U37834 had no effect on total or specific [3H]phenytoin binding nor on the actions of the other benzodiazepines described in concentrations up to 50 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burnham, W. M., Spero, L., Okazaki, M. M., andMadras, B. K. 1981. Saturable binding of [3H]phenytoin in rat brain membrane fraction. Can. J. Physiol. Pharmacol. 59:402–407.

    PubMed  Google Scholar 

  2. Shah, D. S., Chambon, P., andGuidotti, A. 1981. Binding of [3H]5,5, diphenylhydantoin to rat brain membranes. Neuropharmacology 20:1115–1119.

    PubMed  Google Scholar 

  3. Spero, L., 1985, Specific binding of [3H]phenytoin in the human brain. Can. J. Physiol. Pharmacol. In press.

  4. Hamond, E. J., andWilder, B. J. 1983. Immunofluorescent evidence for a specific binding site for phenytoin in the cerebellum. Epilepsia 24:269–274.

    PubMed  Google Scholar 

  5. Bowling, A. C., andDeLorenzo, R. J. 1982. Anticonvulsant receptors: identification and characterization in brain. Neurology 32:A264.

    Google Scholar 

  6. Okazaki, M. M., Madras, B. K., Livingston, K. E., Spero, L., andBurnham, W. M. 1983. Enhancement of [3H]phenytoin binding by diazepam and (+)-bicuculline. Life Sci. 33:409–414.

    Google Scholar 

  7. Leeb-Lundberg, F., Snowman, A., andOlsen, R. W. 1981. Interaction of anticonvulsants with the barbiturate-benzodiazepine-GABA receptor complex. Eur. J. Pharmacol. 72:125–129.

    PubMed  Google Scholar 

  8. Gallager, D. W., Mallorga, P. andTallman, J. 1980. Interaction of diphenylhydantoin and benzodiazepines in the CNS. Brain Res. 189:209–220.

    PubMed  Google Scholar 

  9. Czuczwar, S. J., Turski, L. andKleinrok, Z. 1982. Effects of combined treatment with diphenylhydantoin and different benzodiazepines on pentylenetratrazole and bicuculline induced seizures in mice. Neuropharmacology 21:563–567.

    PubMed  Google Scholar 

  10. Eichberg, J. Jr., Whittaker, J. P., andDawson, R. M. C. 1964. Distribution of lipids in subcellular particles of guinea pig brain. Bichem. J. 92:91–100.

    Google Scholar 

  11. Markwell, M. A. K., Maas, S. M., Bieber, L. L., andTolbert, N. E. 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein determination in membrane and lipoprotein samples. Anal. Bichem. 87:206–210.

    Google Scholar 

  12. Schoemaker, H., Boles, R. G., Horst, W. D., andYamamura, H. I. 1983. Specific high affinity binding sites for [3H]Ro5-4864 in rat brain and kidneys. J. Pharmacol. Exp. Ther. 225:61–69.

    PubMed  Google Scholar 

  13. Ler, C., Perrier, M. L., Vaucher, N., Imbault, F., Flamier, A., Benavides, J., Uzan, A., Renault, C., Dubroecq, M. C., andGueremy, C. 1983. Peripheral benzodiazepine binding sites: Effects of Pk 11195, 1-(2-chlorophenyl)-N-Methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide. Life Sci. 32:1839–1847.

    PubMed  Google Scholar 

  14. File, S. E., andLister, R. G. 1983. Anxiogenic action of Ro5-4864 is reversed by phenytoin. Neurosci. Lett. 35:93–96.

    PubMed  Google Scholar 

  15. Wood, J. D., Johnson, D. D., Krogsgaard-Larsen, P., andShonshoe, A. 1983. Anticonvulsant activity at glial selective GABA uptake inhibitor T.H.P.O. Neuropharmacol. 22:139–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spero, L. Modulation of specific [3H]phenytoin binding by benzodiazepines. Neurochem Res 10, 755–765 (1985). https://doi.org/10.1007/BF00964533

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964533

Keywords

Navigation