Skip to main content
Log in

Is there a “dopaminergic glial cell”?

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Intracellular cAMP increased 9-fold in cerebral hemisphere primary cultures after incubation with dopamine (10−4M). The effect was dose- and time-dependent (10−6 M-10−4M; 2–10 minutes). It was mimicked, to some extent, by the partial agonist apomorphine (10−5 M-10−4 M) and antagonized by fluphenazine (10−5 M-10−4 M). The elevation of cAMP caused by dopamine was incompletely antagonized by propanolol (10−5 M-10−4 M), obviating an interaction with β-adrenergic receptors. A β-adrenergic effect was antagonized by propranolol but only slightly by fluphenazine. The effect of dopamine on cAMP-level was more pronounced in a subpopulation of the hemisphere culture, i.e. in astroglial cultures from the striatum, 12-fold compared with controls at 10−4 M. No dopamine stimulated formation of cAMP was found in primary cultures from brain-stem. The results demonstrated some heterogeneity among astroglial cells. The cultures used contained mainly astroglial-like cells, as judged from immnohistochemical localization mainly astroglial-like cells, as judged from immunohistochemical localization of the glial specific proteins S 100 and GFA (α-albumin). No mature neurons or oligodendroglial cells have so far been demonstrated in the cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuffler, S. W., andNicholls, J. G. 1966. The physiology of neuroglial cells. Pages 1–90,in Kramer, K., Krayer, O., Lehnartz, E., Lynen, F., V. Muralt, A., Trendelenburg, U. G., Weber, H. H., andWestphal, O. (eds.) Biochemistry and Experimental Pharmacology, Band 57, Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  2. Henn, F. A., Haljamäe, H., andHamberger, A. 1972. Glial cell function: active control of extracellular K+ concentration. Brain Research 43:437–443.

    Google Scholar 

  3. Henn, F. A., andHamberger, A. 1971. Glial cell function: Uptake of transmitter substances. Proc. Natl. Acad. Sci. (USA) 68:2686–2690.

    Google Scholar 

  4. Roberts, P. J., andKeen, P. 1974. [14C]glutamate uptake and comparmentation in glia of rat dorsal sensory ganglion. J. Neurochem. 23:201–209.

    Google Scholar 

  5. Henn, F. A. 1975. Glial transport of amino acid neurotransmitter candidates. Pages 91–97,in Berl, S., Clarke, D. D., andSchneider, D. (eds.) Metabolic Compartmentation and Neurotransmission, Plenum Press, N. Y., London.

    Google Scholar 

  6. Schousboe, A., andDivac, I. 1979. Differences in glutamate uptake in astrocytes cultured from different brain regions. Brain Research 177:407–409.

    Google Scholar 

  7. Palmer, G. C. 1973. Adenyl cyclase in neuronal and glial-enriched fractions from rat and rabbit brain. Res. Commun. Chem. Pathol. Pharmacol. 5:603–613.

    Google Scholar 

  8. Palmer, G. C., andManian, A. A. 1976. Actions of phenothiazine analogues on dopamine-sensitive adenylate cyclase in neuronal and glial-enriched fractions from rat brain. Biochem. Pharmacol. 25:63–71.

    Google Scholar 

  9. Perkins, J. P., MacIntyre, E. H., Riley, W. D., andClark, R. B. 1971. Adenyl cyclase, phosphodiesterase and cyclic AMP dependent protein kinase of malignant glial cells in cultures. Life Sci. 10:1069–1080.

    Google Scholar 

  10. Schimmer, B. P. 1971. Effects of catecholamines and monovalent cations on adenylate cyclase activity in cultured glial tumor cells. Biochim. Biophys. Acta 252:567–573.

    Google Scholar 

  11. Gilman, A. G., andNirenberg, M. 1971. Effect of catecholamines on the adenosine 3′:5′-cyclic monophosphate concentrations of clonal satellite cells of neurons. Proc. Natl. Acad. Sci. (USA) 68:2165–2168.

    Google Scholar 

  12. Schultz, J., Hamprecht, B., andDaly, J. W. 1972. Accumulation of adenosine 3′:5′-cyclic monophosphate in clonal glial cells: Labeling of intracellular adenine nucleotides with radioactive adenine. Proc. Natl. Acad. Sci. (USA) 69:1266–1270.

    Google Scholar 

  13. Clark, R. B., andPerkins, J. P. 1971. Regulation of adenosine 3′:5′-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc. Natl. Acad. Sci. (USA) 68:2757–2760.

    Google Scholar 

  14. Van Calker, D. 1977. Untersuchungen zur Charakterisierung und Fraktionierung von Primärkulturen des Zentralnervensystems. Ph.D.-Thesis, University of Munich, Germany.

    Google Scholar 

  15. Van Calker, D., Müller, M., andHamprecht, B. 1979. Receptors regulating the level of cyclic AMP in primary cultures of perinatal mouse brain. Pages 11–25,in Meisami, E. andBrazier, M. A. B. (eds.) Neural Growth and Differentiation, IBRO Monogr. Ser. 5, Raven Press, New York.

    Google Scholar 

  16. Bottenstein, J. E., andDe Vellis, J. 1978. Regulation of cyclic GMP, cyclic AMP and lactate dehydrogenase by putative neurotransmitters in the C6 rat glioma cell line. Life Sci. 23:821–834.

    Google Scholar 

  17. Clark, R. B., Su, Y.-F., Ortmann, R., Cubeddu, X, L., Johnson, G. L., andPerkins, J. P. 1975. Factors influencing the effect of hormones on the accumulation of cyclic AMP in cultured human astrocytoma cells. Metabolism 24:343–358.

    Google Scholar 

  18. Schubert, D., Tarikas, H., andLaCorbiere, M. 1976. Neurotransmitter regulation of adenosine 3′,5′-monophosphate in clonal nerve, glia and muscle cell lines. Science 192:471–472.

    Google Scholar 

  19. Henn, F. A., Anderson, D. J., andSellström, Å. 1977. Possible relationship between glial cells, dopamine and the effects of antipsychotic drugs. Nature 266:637–638.

    Google Scholar 

  20. Henn, F. A., Anderson, D. J., andSellström, Å. 1978. The role of neuroleptic drug receptors on astroglial cells. Pages 435–411,in Schoffeniels, E., Franck, G., Hertz, L. andTower, D. B. (eds.) Dynamic Properties of Glia Cells, Pergamon Press, New York.

    Google Scholar 

  21. Booher, J., andSensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105.

    Google Scholar 

  22. Hansson, E., Sellström, Å, Persson, L. I., andRönnbäck, L. 1980. Brain primary culture—a characterization. Brain Res. 188:233–246.

    Google Scholar 

  23. Hansson, E., Rönnbäck, L., Lowenthal, A., Noppe, M., Alling, C., Karlsson, B., andSellström, Å. 1982. Brain primary culture—a characterization (part II). Brain Res. 231:173–183.

    Google Scholar 

  24. Hansson, E., Rönnbäck, L., Persson, L. I., Lowenthal, A., Noppe, M., Alling, C., andKarlsson, B. 1984. Cellular composition of primary cultures from cerebral cortex, striatum, hippocampus, brain stem and cerebellum. Brain Res., in press.

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  26. Steiner, A. L., Parker, C. W., andKipnis, D. M. 1972. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J. Biol. Chem. 247:1106–1113.

    Google Scholar 

  27. Steiner, A. L., Pagliara, A. S., Chase, L. R., andKipnis, D. M. 1972. Radioimmunoassay for cyclic nucleotides. II. Adenosine 3′,5′,-monophosphate and guanosine 3′,5′-monophosphate in mammalian tissues and body fluids. J. Biol. Chem. 247:1114–1120.

    Google Scholar 

  28. Van Calker, D., Müller, M., andHamprecht, B. 1977. Accumulation of cyclic AMP in primary cultures of perinatal mouse brain is simultaneously not only stimulated but also inhibited by various neurohormones. Hoppe-Seyler's Zeitschrift für physiologische Chemie 358:1188.

    Google Scholar 

  29. Van Calker, D., andHamprecht, B. 1980. Effects of neurohormones on glial cells. Pages 31–67,in Fedoroff, S. andHertz, L. (eds.) Advances in Cellular Neurobiology, Vol. 1, Academic Press, Inc., N.Y.-London.

    Google Scholar 

  30. Seeman, P., Lee, T., Chau-Wong, M., Tedesco, J., andWong, K. 1976. Dopamine receptors in human and calf brains, using (3H)-apomorphine and an antipsychotic drug. Proc. Natl. Acad. Sci. (USA) 73:4354–4358.

    Google Scholar 

  31. Kebabian, J. W., Petzold, G. L., andGreengard, P. 1972. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc. Natl. Acad. Sci. (USA) 69:2145–2149.

    Google Scholar 

  32. Agrawal, H. C., Glisson, S. N., andHimwich, W. A. 1966. Changes in monoamines of rat brain during postnatal ontogeny. Biochim. Biophys. Acta. 130:511–513.

    Google Scholar 

  33. Breese, G. R., andTraylor, T. D. 1972. Developmental characteristics of brain catecholamines and tyrosine hydroxylase in the rat: effects of 6-hydroxydopamine. Br. J. Pharmacol. 44:210–222.

    Google Scholar 

  34. Loizou, L. A. 1972. The postnatal ontogeny of monoamine-containing neurons in the central nervous system of the albino rat. Brain Research 40:395–418.

    Google Scholar 

  35. Vernadakis, A., Nidess, R., andArnold, E. B. 1979. Role of glial cells in neural growth. Pages 27–38,in Meisami, E., andBrazier, M. A. B. (eds.) Neural Growth and Differentiation, IBRO Monogr. Ser. 5, Raven Press, New York.

    Google Scholar 

  36. Schousboe, A., Drejer, J., andDivac, I. 1980. Regional heterogeneity in astroglial cells. Implications of neuron-glia interactions. Trends in Neurosciences 3:XIII-XIV.

    Google Scholar 

  37. Hansson, E. 1983. Accumulation of putative amino acid neurotransmitters, monoamines and D-ala2-met-enkephaline-amide in primary astroglial cultures from various brain areas, visualized by autoradiography. Brain Research, 289;189–196.

    Google Scholar 

  38. Hansson, E. 1984. Enzyme activities of monoamine oxidase, cathechol-o-methyltransferase and γ-aminobutyric acid transaminase in primary astroglial cultures and adult rat brain from different brain regions. Neurochem. Res. 9:45–57.

    Google Scholar 

  39. McGeer, G. L., Eccles, J. C., andMcGeer, E. 1978. Catecholamine Neurons. Pages 233–271in McGeer, P. L., Eccles, J. C., andMcGeer, E. (eds.) Molecular Neurobiology of the Mammalian Brain. Plenum Press, New York and London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, E., Rönnbäck, L. & Sellström, Å. Is there a “dopaminergic glial cell”?. Neurochem Res 9, 679–689 (1984). https://doi.org/10.1007/BF00964514

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964514

Keywords

Navigation