Skip to main content
Log in

Effect of electroacupuncture on synaptosomal (Na++K+)-ATPase

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The action of electroacupuncture (EA) may be similar to analgesia by electrode stimulation or transcutaneous nerve stimulation. Since EA may directly stimulate nerve activity or indirectly enhance the release of opiate peptides and other neurotransmitter substances, we have used (Na++K+)-ATPase as a model to study the mechanism of action of EA. The membrane-bound (Na+K)-ATPase from purified synaptic plasma membranes inhibited slightly by high concentration of endorphin (30 μM), but not by met-enkephalin up to 6×10−4M. A single EA treatment for 30 min did not alter the (Na++K+)-ATPase activity in the cerebral cortex. However, when rats were treated with low (4 Hz) or high (200 Hz) frequency EA 30 min daily for 3 weeks, both (Na++K+)-ATPase and acetylcholinesterase were significantly elevated. The enhanced (Na++K+)-ATPase activity after high frequency EA was only partially blocked by i.p. injection of naloxone prior to EA during the last week of the EA treatment program. The results indicated that EA treatment may involve some other neurotransmitter pathways besides opiate peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, S. A., Ericson, T., Holmgren, E., andLinqvist, G. 1973. Electroacupuncture: effect on pain threshold measured with electrical stimulation of teeth. Brain Res. 63:393–396.

    Google Scholar 

  2. Ulett.G. A. 1981. Acupuncture treatment for pain relief. J. Am. Med. Assoc. 20, 768–769.

    Google Scholar 

  3. Sjolund, B. H., Terenius, L., andEriksson, M. B. E. 1977. Increased cerebrospinal fluid levels of endorphins after electroacupuncture. Acta Physiol. Scand. 100:383–384.

    Google Scholar 

  4. Amir, S., andAmit, Z. 1979. The pituitary gland mediates acute and chronic pain responsiveness in stressed and non-stressed rats. Life Sci. 24:439–448.

    Google Scholar 

  5. Pomerantz, B., andChiu, D. 1976. Naloxone blockade of acupuncture analgesia: endorphin implicated. Life Sci. 19:1757–1762.

    Google Scholar 

  6. Ha, H. C., Tan, E. C., Fukunaga, H., andAochi, O. 1981. Naloxone reversal of acupuncture analgesia in the monkey. Exp. Neurol. 73:298–303.

    Google Scholar 

  7. Mayer, D. J., Price, D. D., andRafii, A. 1977. Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res. 121:368–372.

    Google Scholar 

  8. Han, J. S., andTerenius, L. 1982. Neurochemical basis of acupuncture analgesia. Ann. Rev. Pharmacol. Toxicol. 22:193–220.

    Google Scholar 

  9. Guerrero-Munoz, F., Guerrero, M. L., andWay, E. L. 1979. Effect of morphine on calcium uptake by lysed synaptosomes. J. Pharmacol. Expt. Ther. 211:370–374.

    Google Scholar 

  10. Guerrero-Munoz, F., Guerrero, M. L., Way, E. L., andLi, C. H. 1980. Effect of β-endorphin on calcium uptake in the brain. Physchopharmacol. Bull. 16(2):57–58.

    Google Scholar 

  11. Williams, N., andClouet, D. H. 1982. The effect of acute opioid administration on the phosphorylation of rat striatal synaptic membrane proteins. J. Pharmacol. Expt. Ther. 220:278–286.

    Google Scholar 

  12. Sun, A. Y., andSun, G. Y. 1976. Functional roles of phospholipids of synaptosomal membrane, Pages 169–197,in G. Porcellati, L. Amaducci, andC. Galli (eds.), Function and Metabolism of Phospholipids in CNS and PNS. Plenum Press, New York.

    Google Scholar 

  13. Jain, M. L., Curtis, B. M., andBakutis, E. V. 1974. In vivo effect of LSD, morphine, ethanol, 9-tetrahydrocannabinol on mouse brain adenosine triphosphatase activity. Res. Comm. Chem. Pathol. Pharmacol. 7:229–232.

    Google Scholar 

  14. Desaiah, D., andHo, I. K. 1977. Effect of morphine on mouse brain ATPase activities. Biochem. Pharmacol. 26:89–92.

    Google Scholar 

  15. Vizi, E. S., Torok, T., Seregi, A., Serfozo, P., andAdam-Vizi, V. 1982. (Na+K)-activated ATPase and the release of acetylcholine and noradrenaline. J. Physiol. (Paris) 78:399–406.

    Google Scholar 

  16. Chang, C-G., andChiang, R. T. 1982. Acupuncture Manual, Pages 71–73, The points of the fourteen meridians and the extraordinary points. China Medical College Publishing Press, Taichung, Taiwan.

    Google Scholar 

  17. Wright, M., andMcGrath, C. J. 1981. Physiological and analgesic effects of acupuncture in the dog. J. Am. Vet. Med. Assoc. 178:502–507.

    Google Scholar 

  18. Sun, A. Y., andSamorajski, T. 1970. Effects of ethanol on the activity of adenosine triphosphatase and acetylcholinesterase in synaptosomes isolated from guinea pig brain. J. Neurochem. 17:1365–1372.

    Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. L. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  20. Akil, H., andMayer, D. J. 1972. Antagonism of stimulation-produced analgesia by p-CPA, a serotonin synthesis inhibitor. Brain Res. 44:692–697.

    Google Scholar 

  21. Basbaum, A. I., andFields, H. L. 1978. Endogenous pain control and mechanisms: Review and hypothesis. Annals Neurol. 4:451–462.

    Google Scholar 

  22. Sjolund, B., andEriksson, M. 1979. The influence of naloxone on analgesic produced by peripheral conditioning stimulation. Brain Res. 173:295–301.

    Google Scholar 

  23. Meyerson, B. A. 1983. Electrostimulation procedures: Effects, presumed rationale and possible mechanisms. Adv. Pain Res. Ther. 5:495–534.

    Google Scholar 

  24. Jeffe, R. A., Laszewski, B. L., Carr, D. B., andPhillips, R. D. 1980. Chronic exposure to a 60 Hz electric field: effect on synaptic transmission and peripheral nerve function in the rat. Electromagnetics 1:131–147.

    Google Scholar 

  25. Battaini, F., andPeterkofsky, A. 1980. Histidylproline diketopiperazine, an endogenous brain peptide that inhibits (Na+K)-ATPase. Biochem. Biophys. Res. Commun. 94:240–247.

    Google Scholar 

  26. Akil, H. D., Mayer, D. J., andLiebeskind, J. C. 1976. Antagonism of stimulationproduced analgesia by naloxone, a narcotic antogonist. Science 191:961–962.

    Google Scholar 

  27. Chiueh, C. C., andMoore, K. E. 1974. In vivo release of endogenously synthesized catecholamines from the cat brain evoked by electrical stimulation and by d-amphetamine. J. Neurochem. 23:159–168.

    Google Scholar 

  28. Cheng, R. S. S., andPomerantz, B. 1979. Electroacupuncture analgesia could be mediated by at least two pain-relieving mechanisms: endorphin and non-endorphin systems. Life Sci. 25:1957–1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.Z., Sun, A.Y. Effect of electroacupuncture on synaptosomal (Na++K+)-ATPase. Neurochem Res 9, 669–678 (1984). https://doi.org/10.1007/BF00964513

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964513

Keywords

Navigation