Advertisement

Neurochemical Research

, Volume 9, Issue 5, pp 595–606 | Cite as

Developmental changes in the activity and substrate specificities of mouse brain monoamine oxidase

  • Yayoi Koide
  • Kiyofumi Kobayashi
Original Articles

Abstract

Developmental changes in monoamine oxidase (MAO) activity in the mouse brain were investigated with the substrates β-phenylethylamine (PEA), tryptamine, and 5-hydroxytryptamine (5-HT). In the newborn brain, MAO activity towards PEA was found to be much lower than the adult and to be inhibited by clorgyline in a double-sigmoidal fashion. The inhibition curve shifted to a single-sigmoidal pattern with age. MAO activity towards 5-HT as substrate was inhibited by 90% and in a single-sigmoidal manner by clorgyline throughout the postnatal life. Lineweaver-Burk plots with PEA as substrate presented two linear lines (apparentKm: 28.6 and 4.1 μM) for the newborn and one line (apparentKm: 11.4 μM) for the adult, respectively. The plot with highKm value for the newborn brain disappeared in a clorgyline-treated preparation. These findings suggest that age-dependent alterations in the ratio of MAO-A/MAO-B activity affect the substrate specificity of the enzyme.

Keywords

Substrate Specificity Monoamine Mouse Brain Monoamine Oxidase Developmental Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnston, J. P. 1968. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem. Pharmacol. 17:1285–1297.Google Scholar
  2. 2.
    Fowler, C. J., Callingham, B. A., Mantle, T. J., andTipton, K. F. 1978 Monoamine oxidase A and B: a useful concept? Biochem. Pharmacol. 27:97–101.Google Scholar
  3. 3.
    Lyles, G. A., andCallingham, B. A. 1979. Selective influences of age and thyroid hormones on type A monoamine oxidase of the rat heart. J. Pharm. Pharmacol. 31:755–760.Google Scholar
  4. 4.
    Lyles, G. A., andCallingham, B. A. 1975. Evidence for a clorgyline-resistant monoamine metabolizing activity in the rat heart. J. Pharm. Pharmacol. 27:682–691.Google Scholar
  5. 5.
    Murphy, D. L., Redmond, D. E., Garrick, N., andBaulu, J. 1979. Brain region differences and some characteristics of monoamine oxidase type A and B activities in the vervet monkey. Neurochem. Res. 4:53–62.Google Scholar
  6. 6.
    Mantle, T. J., Houslay, M. D., Garret, N. J., andTipton, K. F. 1976. 5-hydroxytryptamine is a substrate for both species of monoamine oxidase in beef heart mitochondria. J. Pharm. Pharmacol. 28:667–671.Google Scholar
  7. 7.
    Suzuki, O., Mizutani, S., Katsumata, Y., andOya, M. 1981. Identification of type A monoamine oxidase in mouse and rabbit liver mitochondria. Experientia 37:18–19.Google Scholar
  8. 8.
    Suzuki, O., Katsumata, Y., andOya, M. 1982. Substrate specificity of type A and type B monoamine oxidase. Pages 74–86,in Kamijo, K., Usdin, E., andNagatsu, T. (eds.), Monoamine Oxidase; Basic and Clinical Frontiers, Excerpta Medica, Amsterdam.Google Scholar
  9. 9.
    Tipton, K. F., Fowler, C. J., andHouslay, M. D. 1982. Specificities of the two forms of monoamine oxidase. Pages 87–99,in Kamijo, K., Usdin, E., andNagatsu, T. (eds.), Monoamine Oxidase; Basic and Clinical Frontiers, Excerpta Medica, Amsterdam.Google Scholar
  10. 10.
    Mantle, T. J., Garrett, N. J., andTipton, K. F. 1976. The development of monoamine oxidase in rat liver and brain. FEBS Lett. 64:227–230.Google Scholar
  11. 11.
    Strolin Benedetti, M., andKeane, P. E. 1980. Differential changes in monoamine oxidase A and B activity in the aging rat brain. J. Neurochem. 35:1026–1032.Google Scholar
  12. 12.
    Leung T. K. C., Lai, J. C. K., andLim, L. 1981. The regional distribution of monoamine oxidase activities towards different substrates: effects in rat brain of chronic administration of manganese chloride and of aging. J. Neurochem. 36:2037–2043.Google Scholar
  13. 13.
    Blatchford, D., Holzbauer, M., Grahame-Smith, D. G., andYoudim, M. B. H. 1976. Ontogenesis of enzyme systems deaminating different monoamines. Br. J. Pharmac. 57:279–293.Google Scholar
  14. 14.
    Baker, P. C., Hoff, K. M., andSmith, M. D. 1974. The maturation of monoamine oxidase and 5-hydroxyindole acetic acid in regions of the mouse brain. Brain Res. 65:255–264.Google Scholar
  15. 15.
    Jourdikian, F., Tabakoff, B., andAlivisatos, S. G. A. 1975. Ontogeny of multiple forms of monoamine oxidase in mouse brain. Brain Res. 93:301–308.Google Scholar
  16. 16.
    Diez, J. A., andMaderdrut, J. L. 1977. Development of multiple forms of mouse brain monoamine oxidase in vivo and in vitro. Brain Res. 128:187–197.Google Scholar
  17. 17.
    Samsa, J. M., Baker, P. C., andHoff, K. M. 1979. Monoamine oxidase inhibition and recovery in the mouse brain at various ages after birth. Biol. Neonate 35:249–254.Google Scholar
  18. 18.
    Fowler, C. J., Wiberg, Å. Oreland, L., Marcusson, J., andWinblad, B. 1980. The effect of age on the activity and molecular properties of human brain monoamine oxidase. J. Neural Transm. 49:1–20.Google Scholar
  19. 19.
    Oreland, L., andFowler, C. J. 1980. The activity of human brain and thrombocyte monoamine oxidase (MAO) in relation to various psychiatric disorders. Pages 389–396,in Singer, T. P., Von Korff, R. W., andMurphy, D. L. (eds.), Monoamine Oxidase; Structure, Function and Altered Functions, Academic Press, New York.Google Scholar
  20. 20.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  21. 21.
    Wurtman, R> J., andAxelrod, J. 1963. A sensitive and specific assay for the estimation of monoamine oxidase. Biochem. Pharmacol. 12:1439–1441.Google Scholar
  22. 22.
    McCaman, R. E., McCaman, M. W., Hunt, J. M., andSmith, M. S. 1965. Microdetermination of monoamine oxidase and 5-hydroxytryptophan decarboxylase activities in nervous tissues. J. Neurochem. 12:15–23.Google Scholar
  23. 23.
    Koide, Y., Koide, N., Ross, S., Sääf, J., andWetterberg, L. 1981. Monoamine oxidase in human platelets—Kinetics and methodological aspects. Biochem. Pharmacol. 30:2893–2900.Google Scholar
  24. 24.
    Bourgoin, S., Artaud, F., Adrien, J., Henry, F., Glowinski, J., andHamon, M. 1977. 5-hydroxytryptamine catabolism in the rat brain during ontogenesis. J. Neurochem. 28:415–422.Google Scholar
  25. 25.
    Nelson, D. L., Herbet, A., Glowinski, J., andHamon, M. 1979. [3H]Harmaline as a specific ligand of MAO A-II. Measurement of the turnover rates of MAO A during ontogenesis in the rat brain. J. Neurochem. 32:1829–1836.Google Scholar
  26. 26.
    Lyles, G. A., andGreenawalt, J. W. 1977. Observations on the inhibition of rat liver monoamine oxidase by clorgyline. Biochem. Pharmacol. 26:2269–2274.Google Scholar
  27. 27.
    Fowler, C. J., Oreland, L., andCallingham, B. A. 1981. The acetylenic monoamine oxidase inhibitors clorgyline, deprenil, pargyline and J-508: their properties and applications. J. Pharm. Pharmacol. 33:341–347.Google Scholar
  28. 28.
    Edwards, D. J., Pak, K. Y., andVenetti, M. C. 1979. Developmental aspects of rat heart monoamine oxidase. Biochem. Pharmacol. 28:2337–2343.Google Scholar
  29. 29.
    Schurr, A., Ho, B. T., andSchoolar, J. C. 1981. Human brain monoamine oxidase: one molecular entity—multiple binding sites? J. Pharm. Pharmacol. 33:165–170.Google Scholar
  30. 30.
    Kinemuchi, H., Wakui, Y., andKamijo, K. 1980. Substrate selectivity of type A and type B monoamine oxidase in rat brain. J. Neurochem. 35:109–115.Google Scholar
  31. 31.
    Suzuki, O., Hattori, H., Oya, M., Katsumata, Y., andMatsumoto, T. 1979. Oxidation of β-phenylethylamine by both types of monoamine oxidase: effects of substrate concentration and pH. Life Sci. 25:1231–1236.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Yayoi Koide
    • 1
  • Kiyofumi Kobayashi
    • 1
  1. 1.Department of Clinical Neurochemistry Institute for NeurobiologyOkayama University Medical SchoolOkayamaJapan

Personalised recommendations