Skip to main content
Log in

Properties of [3H]taurine release from crude synaptosomal fractions of rat cerebral cortex

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The release of previously accumulated [3H]taurine and [14C]GABA from crude synaptosomal (P2) fractions isolated from rat cerebral cortex was studied using a superfusion system. The spontaneous efflux of [3H]taurine and [14C]GABA was stimulated by elevated concentrations of K+ (15–133 mM) in a concentration-dependent manner. This K+-stimulated release of [14C]GABA but not of [3H]taurine was enhanced in the presence of Ca2+. However, addition of 3 mM Ca2+ to the superfusion medium in the presence of the ionophore A 23187 resulted in a stimulation of the release of both [3H]taurine and [14C]GABA. These results are discussed in connection with the cellular localization of tourine in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbeau, A., andHuxtable, R. (eds.) 1978. Taurine and Neurological Disorders, Raven Press, New York.

    Google Scholar 

  2. Blaustein, M. P., Johnson, E. R., Jr., andNeedleman, P. 1972. Calcium dependent norepinephrine release from presynaptic nerve endings in vitro. Proc. Natl. Acad. Sci., U.S.A. 69:2237–2240.

    Google Scholar 

  3. Borg, J., Balcar, V. J., andMandel, P. 1976. High affinity uptake of taurine in neuronal and glial cells. Brain Res. 118:514–516.

    Google Scholar 

  4. Clark, R. M., andCollins, G. G. S. 1976. The release of endogenous amino acids from the rat visual cortex. J. Physiol. 262:383–400.

    Google Scholar 

  5. Collins, G. G. S., andTopiwala, S. H. 1974. The release of [14C]-taurine from slices of rat cerebral cortex and spinal cord evoked by electrical stimulation and high potassium ion concentrations. Br. J. Pharmacol. 50:451–452.

    Google Scholar 

  6. Cotman, C. W., Herschman, H., andTaylor, D. 1971. Subcellular fractionation of cultured flial cells. J. Neurobiol. 2:169–180.

    Google Scholar 

  7. Cotman, C. W., Haycock, J. W., andFrost White, W. 1976. Stimulus-secretion coupling processes in the brain: analysis of noradrenaline and gamma-aminobutyric acid release. J. Physiol. 254:475–505.

    Google Scholar 

  8. Curtis, D. R., andWatkins, J. C. 1965. The pharmacology of amino acids related to γ-aminobutyric acid. Pharmacol. Rev. 17:347–391.

    Google Scholar 

  9. de Belleroche, J. S., andBradford, H. F. 1973. Amino acids in synaptic vesicles from mammalian cerebral cortex: A reappraisal. J. Neurochem. 21:441–451.

    Google Scholar 

  10. Ehinger, B. 1973. Glial uptake of taurine in the rabbit retina. Brain Res. 60:512–516.

    Google Scholar 

  11. Hammerstad, J. P., Murray, J. E., andCutler, R. W. P. 1971. Efflux of amino acid neurotransmitters from rat spinal cord slices. II. Factors influencing the electrically induced efflux of [14C]glycine and [3H]GABA. Brain Res. 35:357–367.

    Google Scholar 

  12. Henn, F. A., andHamberger, A. 1971. Glial cell function: Uptake of transmitter substances. Proc. Natl. Acad. Sci. U.S.A. 68:2686–2690.

    Google Scholar 

  13. Henn, F. A., Goldstein, M. N., andHamberger, A. 1974. Uptake of the neurotransmitter candidate glutamate by glia. Nature 249:663–664.

    Google Scholar 

  14. Hruska, R. E., Padjen, A., Bressler, R., andYamamura, H. I. 1978. Taurine: Sodium-dependent, high-affinity transport into rat brain synaptosomes. Mol. Pharmacol. 14:77–85.

    Google Scholar 

  15. Huxtable, R., andBarbeau, A. (eds.) 1976. Taurine, Raven Press, New York.

    Google Scholar 

  16. Jacobsen, J. G., andSmith, L. H. 1968. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev. 48:425–511.

    Google Scholar 

  17. Jasper, H. H., andKoyama, I. 1969. Rate of release of amino acids from the cerebral cortex in the cats as affected by brainstem and thalamic stimulation. Can. J. Physiol. Pharmacol. 47:889–905.

    Google Scholar 

  18. Kaczmarek, L. K., andDavison, A. N. 1972. Uptake and release of taurine from rat brain slices. J. Neurochem. 19:2355–2362.

    Google Scholar 

  19. Kontro, P., andOja, S. S. 1978. Sodium dependence of taurine in rat brain synaptosomes. Neuroscience 3:761–765.

    Google Scholar 

  20. Lähdesmäki, P., Pasula, M., andOja, S. S. 1975. Effect of electrical stimulation and chlorpromazine on the uptake and release of taurine, γ-aminobutyric acid and glutamic acid in mouse brain synaptosomes. J. Neurochem. 25:675–680.

    Google Scholar 

  21. Levi, G., Roberts, P. J., andRaiteri, M. 1976. Release and exchange of neurotransmitters in synaptosomes: effects of the ionophore A 23187 and of ouabain. Neurochem. Res. 1:409–416.

    Google Scholar 

  22. McBride, W. J., Nadi, N. S., Altman, J., andAprison, M. H. 1976. Effects of selective doses of X-irradiation on the levels of several amino acids in the cerebellum of the rat. Neurochem. Res. 1:141–152.

    Google Scholar 

  23. McCaman, R., andStetzler, J. 1977. Determination of taurine in individual neurones ofAplysia california. J. Neurochem. 29:739–741.

    Google Scholar 

  24. McLennan, H. 1976. The autoradiographic localization ofl-[3H]glutamate in rat brain tissue. Brain Res. 115:139–144.

    Google Scholar 

  25. Minchin, M. C. W., andIversen, L. L. 1974. Release of [3H]gamma-aminobutyric acid from glial cells in rat dorsal root ganglia. J. Neurochem. 23:533–540.

    Google Scholar 

  26. Mulder, A. H., andSnyder, S. H. 1974. Potassium-induced release of amino acids from cerebral cortex and spinal cord slices of the rat. Brain Res. 76:297–308.

    Google Scholar 

  27. Oja, S. S., andLähdesmäki, P. 1974. Is taurine an inhibitory neurotransmitter? Med. Biol. 52:138–143.

    Google Scholar 

  28. Pasantes-Morales, H., Urban, P. F., Klethi, J., andMandel, P. 1973. Light stimulated release of [35S]-taurine from chicken retina. Brain Res. 51:375–378.

    Google Scholar 

  29. Placheta, P., Singer, E., Schönbeck, G., Heckl, K., andKarobath, M. 1979. Reduction of endogenous level, uptake and release of taurine after intrastriatal kainic acid injection. Neuropharmacology 18:399–402.

    Google Scholar 

  30. Pressman, B. C. 1973. Properties of ionophores with broad range cation selectivity. Fed. Proc. 32:1698–1703.

    Google Scholar 

  31. Raiteri, M., Angelini, F., andLevi, G. 1974. A simple apparatus for studying the release of neurotransmitters from synaptosomes. Eur. J. Pharmacol. 25:411–414.

    Google Scholar 

  32. Redburn, D. A., Shelton, D., andCotman, C. W. 1976. Calcium-dependent release of exogenously loaded γ-amino-[U-14C]butyrate from synaptosomes: Time course of stimulation by potassium, veratridine, and the calcium ionophore A 23187. J. Neurochem. 26:297–303.

    Google Scholar 

  33. Richelson, E., andThompson, E. J. 1973. Transport of neurotransmitter precursors into cultured cells. Nature (London), New Biol. 241:201–204.

    Google Scholar 

  34. Rubin, R. P. 1970. The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22:389–428.

    Google Scholar 

  35. Schmid, R. Sieghart, W., andKarobath, M. 1975. Taurine uptake in synaptosomal fractions of rat cerebral cortex. J. Neurochem. 25:5–9.

    Google Scholar 

  36. Schon, F., andKelly, J. S. 1974. Autoradiographic localization of [3H]GABA and [3H]glutamate over satellite glial cells. Brain Res. 66:275–288.

    Google Scholar 

  37. Schrier, B. K., andThompson, E. J. 1974. On the role of glial cells in the mammalian nervous system. Uptake, excretion and metabolism of putative neurotransmitters by cultured glial tumor cells. J. Biol. Chem. 249:1769–1780.

    Google Scholar 

  38. Sellström, A., andHamberger, A. 1975. Neuronal and glial systems for γ-aminobutyric acid transport. J. Neurochem. 24:847–852.

    Google Scholar 

  39. Sellström, A., andHamberger, A. 1977. Potassium-stimulated γ-aminobutyric acid release from neurons and glia. Brain Res. 119:189–198.

    Google Scholar 

  40. Sieghart, W., andKarobath, M. 1974. Evidence for specific synaptosomal localization of exogenous accumulated taurine. J. Neurochem. 23:911–915.

    Google Scholar 

  41. Sieghart, W., andHeckl, K. 1976. Potassium-evoked release of taurine from synaptosomal fractions of rat cerebral cortex. Brain Res. 116:538–543.

    Google Scholar 

  42. Sieghart, W., andKarobath, M. 1976. Uptake of taurine into subcellular fractions of C-6 glioma cells. J. Neurochem. 26:981–986.

    Google Scholar 

  43. Sieghart, W., Sellström, A., andHenn, F. 1978. Sedimentation characteristics of subcellular vesicles derived from three glial systems. J. Neurochem. 30:1587–1589.

    Google Scholar 

  44. Weinreich, D., andHammerschlag, R. 1975. Nerve impulse-enhanced release of amino acids from nonsynaptic regions of peripheral and central nerve trunks of bullfrog. Brain Res. 84:137–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Placheta, P., Singer, E., Sieghart, W. et al. Properties of [3H]taurine release from crude synaptosomal fractions of rat cerebral cortex. Neurochem Res 4, 703–712 (1979). https://doi.org/10.1007/BF00964467

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964467

Keywords

Navigation