Neurochemical Research

, Volume 4, Issue 5, pp 557–565 | Cite as

Age-dependent changes in the specificity of tRNA methyltransferases in the cerebellum of the icteric and nonicteric Gunn rat

  • Jacques Dainat
  • F. de Balbian Verster
  • R. Zand
  • O. Z. Sellinger
Original Articles

Abstract

The activity of tRNA methyltransferases present in the cerebellum of 6- and 21-day-old nonicteric and icteric Gunn rats was compared using purifiedE. coli tRNAs as substrates. At 6 days the tRNA methyltransferases of the icteric animals were significantly more effective in methylating tRNAGlu2 and tRNAPhe than were those of their nonicteric counterparts. This relationship reversed itself at 21 days. The action of the tRNA methyltransferases from the 6-day-old icteric animals led to higher proportions of 1-methyladenine in tRNAGlu2 and tRNAPhe than were obtained using the corresponding enzymes of the nonicteric animals. The proportion ofN2-methylguanine was also higher, yet only in tRNAfMet and not in tRNAPhe. The study reveals much more extensive fluctuations in the activity and in the substrate recognition specificity among the cerebellar tRNA methyltransferases of the icteric than among those of the nonicteric controls during the crucial 6–21 day period of cerebellar development.

Keywords

Recognition Specificity Substrate Recognition Cerebellar Development tRNA Methyltransferases Extensive Fluctuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nau, F. 1976. The methylation of tRNA.Biochimie 58:629–645.Google Scholar
  2. 2.
    Agris, P. F., andSoll, D. 1977. The modified nucleosides in transfer RNA. Pages 321–344,in Nucleic Acid and Protein Recognition. Academic Press, New York.Google Scholar
  3. 3.
    Caboche, M., andBachellerie, J.-P. 1977. RNA methylation and control of eukaryotic RNA biosynthesis.Eur. J. Biochem. 74:19–29.Google Scholar
  4. 4.
    Munns, T. W., andSims, H. F. 1975. Methylation and processing of transfer ribonucleic acid in mammalian and bacterial cell.J. Biol. Chem. 250:2143–2149.Google Scholar
  5. 5.
    Elahi, E., andSellinger, O. Z. 1979. The post-natal methylation of tRNA in brain: Evidence for the methylation of precursor tRNA.Biochem. J. 177:381–384.Google Scholar
  6. 6.
    Cummins, C. J., Salas, C. E., andSellinger, O. Z. 1975. The homologous methylation of tRNA in rat brain.Brain Res. 96:406–412.Google Scholar
  7. 7.
    Salas, C. E., Cummins, C. J., andSellinger, O. Z. 1976. The developmental pattern of homologous and heterologous tRNA methylation in rat brain: Differential effects of spermidine.Neurochem. Res. 1:369–384.Google Scholar
  8. 8.
    Sellinger, O. Z., Dainat, J., andSalas, C. E. 1977. The relationship of tRNA methylation to brain protein synthesis during cortical and cerebellar development. Pages 55–70,in Gispen, W. H., Lajtha, A., andRoberts, S. (eds.),Mechanisms, Regulation and Special Functions of Protein Synthesis in Brain. Elsevier/North-Holland, Amsterdam.Google Scholar
  9. 9.
    Dainat, J., andSellinger, O. Z. 1979. Cerebellar tRNA methyltransferases: A developmental study.Brain Res. (in press).Google Scholar
  10. 10.
    Sawasaki, Y., Yamada, N., andNakajima, H. 1976. Developmental features of cerebellar hypoplasia and brain bilirubin levels in a mutant (Gunn) rat with hereditary hyperbilirubinemia.J. Neurochem. 27:577–583.Google Scholar
  11. 11.
    Greenfield, S., andNandi Majumdar, A. P. 1974. Bilirubin encephalopathy: Effect on protein synthesis in the brain of the Gunn rat.J. Neurol. Sci. 22:83–89.Google Scholar
  12. 12.
    Gurba, P. E., andZand, R. 1974. Bilirubin binding to myelin basic protein, histones and its inhibitionin vitro of cerebellar protein synthesis.Biochem. Biophys. Res. Commun. 58:1142–1147.Google Scholar
  13. 13.
    Yamada, N., Sawasaki, Y., andNakajima, H. 1977. Impairment of DNA synthesis in Gunn rat cerebellum.Brain Res. 126:295–307.Google Scholar
  14. 14.
    Yamada, N., Sawasaki, Y., andNakajima, H. 1976. Studies on kernicterus. V. Decreased thymidine kinase activity in Gunn rat cerebellum.Proc. Jpn. Acad. 52:148–151.Google Scholar
  15. 15.
    Yamada, N., Sawasaki, Y., andNakajima, H. 1973. Studies on kernicterus. II. Impairment of DNA synthesis in homozygous Gunn rats.Proc. Jpn. Acad. 49:846–851.Google Scholar
  16. 16.
    Sawasaki, Y., Mori, E., Yamada, N., andNakajima, H. 1976. Studies on kernicterus. VII. Autoradiographic study of cerebellar hypoplasia in Gunn rat.Proc. Jpn. Acad. 52:517–520.Google Scholar
  17. 17.
    Salas, C. E., andSellinger, O. Z. 1977. Rapid, quantitative separation by highperformance liquid chromatography of methylated bases in transfer RNA.J. Chromatog. 133:231–236.Google Scholar
  18. 18.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin reagent.J. Biol. Chem. 193:265–275.Google Scholar
  19. 19.
    Morin, L. G. 1973. Improved stable diazonium salt procedure for determination of total serum bilirubin.Clin. Chim. Acta 47:111–112.Google Scholar
  20. 20.
    Zand, R., andde Balbian Verster, F. 1978. GABA and other biochemical changes in hyperbilirubinemic rat brain.Tr. Am. Soc. Neurochem. 9:142.Google Scholar
  21. 21.
    Salas, C. E., andSellinger, O. Z. 1978. Methylation ofE. coli transfer ribonucleic acids by a tRNA adenine-1-methyltransferase from rat brain cortex and bulk-isolated neurons.J. Neurochem. 31:85–91.Google Scholar
  22. 22.
    Dainat, J., Salas, C. E., andSellinger, O. Z. 1978. Alteration of the specificity of brain tRNA methyltransferases and of the pattern of brain tRNA methylationin vivo by methionine sulfoximine.Biochem. Pharmacol. 27:2655–2658.Google Scholar
  23. 23.
    Spremulli, L. L., Agris, P. F., Brown, G. M., andRajbhandary, U. L. 1974.Escherichia coli formylmethionine tRNA: Methylation of specific guanine and adenine residues catalyzed by HeLa cell tRNA methylases and the effect of these methylations on its biological properties.Arch. Biochem. Biophys. 162:22–37.Google Scholar
  24. 24.
    Glick, J. M., Averyhart, V. M., andLeboy, P. S. 1978. Purification and characterization of two tRNA-(guanine)-methyltransferases from rat liver.Biochim. Biophys. acta 518:158–171.Google Scholar
  25. 25.
    Kraus, J. 1978. Recognition of individualEscherichia coli transfer ribonucleic acids by 1-adenine specific methyltransferase from rat liver.Biochem. J. 169:247–249.Google Scholar
  26. 26.
    Salas, C. E., Ohlsson, W. G., andSellinger, O. Z. 1977. The stimulation of cerebralN 2-methyl- andN 2 2-dimethyl guanine specific tRNA methyltransferases by methionine sulfoximine: Anin vivo study.Biochem. Biophys. Res. Commun. 76:1107–1115.Google Scholar
  27. 27.
    Yamagami, S., Mori, K., andKawakita, Y. 1972. Changes in thymidine kinase in the developing rat brain.J. Neurochem. 19:369–376.Google Scholar
  28. 28.
    Dainat, J., andRebière, A. 1976. The change in the incorporation of [6-14C]-orotic acidin vivo into RNA and DNA in the cerebellum of young hypo- and hyperthyroid rats: comparative effects of hypo- and hyperthyroidism on cell multiplication.J. Neurochem. 26:941–950.Google Scholar
  29. 29.
    Rebière, A., andDainat, J. 1976. Etude ultrastructurale quantitative du péricaryon de la cellule de Purkinje et de son environnement chez le rat normal et hypothyroidien âgés de 21 jours.Exp. Brain Res. 25:511–527.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Jacques Dainat
    • 1
    • 3
  • F. de Balbian Verster
    • 2
  • R. Zand
    • 2
  • O. Z. Sellinger
    • 1
  1. 1.Laboratory of Neurochemistry, Mental Health Research InstituteUniversity of MichiganAnn Arbor
  2. 2.Division of Biophysics, Institute of Science and TechnologyUniversity of MichiganAnn Arbor
  3. 3.Department of Biological ChemistryUniversity of MichiganAnn Arbor

Personalised recommendations