Abstract
Exposure to Hg2+ below 10 μM destroys synaptosomal membrane-associated sialidase of bovine brain in situ. Inhibition by Cu2+ occurs only at relatively higher concentrations, and is demonstrable after the synaptosomal nembrane preparation has been presaturated with Cu2+. Pb2+ does not inhibit enzymatic activity. Hg2+ does not exert a significant effect on the free energy of association of monomeric brain gangliosides into aggregates, or on the stability of the aggregate forms, as estimated by ultracentrifugal analysis of the ion-independent moment of ganglioside micelles as a function of concentration. Hg2+ inhibits synaptic membrane sialidase acting both in situ on the native sialocompounds in the membrane, or on exogenous ganglioside. Kinetic analyses of the exogenous activity in membranes exposed to Hg2+ reveal loweredV max values but no substantial change inK m for synaptosomal membrane gangliosides. These findings suggest that the powerful inhibitory effect exerted by Hg2+ on nerve ending membrane sialidase is enzyme directed, not substrate directed. It may be postulated that part of the neurotoxic effect of low levels of Hg2+ stems from an interference with synaptic metabolism by the destruction of membrane-associated sialidase. This enzyme can serve the purpose of modulation of synaptic negative charge density by releasing bound, strongly anionic, sialic acid from highly concentrated sialocompounds in the membrane.
Similar content being viewed by others
References
Morgan, E. H., andLaurell, C.-B. 1963. Neuraminidase in mammalian brain. Nature 197:921–922.
Tettamonti, G., Morgan, I. G., Gombos, G., Vincendon, G., andMandel, P. 1972. Sub-synaptosomal localization of brain particulate neuraminidase. Brain Res. 47:515–518.
Yohe, H., andRosenberg, A. 1977. Action of intrinsic sialidase of rat brain synaptic membranes on membrane sialolipid and sialoprotein componentsin situ. J. Biol. Chem. 252:2412–2418.
Triggle, D. J. 1971. Pages 401–4585,in Neurotransmitter-Receptor Interactions, Academic Press, New York.
Cumings, J. N. 1959. Heavy Metals and the Brain, Charles C Thomas, Springfield, Illinois.
Öhman, R., Rosenberg, A., andSvennerholm, L. 1970. Human brain sialidase. Biochemistry 9:3774–3782.
Schengrund, C.-L., andNelson, J. T. 1975. Influence of cation concentration on the sialidase activity on neuronal synaptic membranes. Biochem. Biophys. Res. Commun. 63:217–223.
Tulsiani, D. R. P., andCarubelli, R. 1972. Soluble and lysosomal neuroaminidases in the liver of developing chicks. Biochim. Biophys. Acta 284:257–267.
Schengrund, C.-L., Jensen, D. S., andRosenberg A. 1972. Localization of sialidase in the plasma membrane of rat liver cells. J. Biol. Chem. 247:2742–2746.
Visser, A., andEmmelot, P. 1973. Studies on plasma membranes. XX. Sialidase in hepatic plasma membranes. J. Membr. Biol. 14:73–84.
Kishore, G. S., Tulsiani, D. R. P., Bhavanadan, V. P., andCarubelli, R. 1975. Membrane-bound neuraminidases of rat liver. J. Biol. Chem. 250:2655–2659.
Behr, J.-P., andLehn, J. M. 1973. The binding of divalent cations by purified gangliosides. FEBS Lett. 31:297.
Yohe, H., andRosenberg, A. 1972. Interaction of triiodide anion with gangliosides in aqueous iodine. Chem. Phys. Lipids 9:279–294.
Preti, A., Lombardo, A., Cestaro, B., Zambotti, S., andTettamanti, G. 1974. Studies on brain menbrane-bound neuraminidase. I. General properties of the enzyme prepared from calf brain. Biochim. Biophys. Acta 350:406–414.
Schengrund, C.-L., andRosenberg, A. 1970. Intracellular location and properties of bovine brain sialidase. J. Biol. Chem. 245:6196–6200.
Hartree, E. F. 1972. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48:422–427.
Warren, L. 1959. The thiobarbituric acid assay of sialic acids J. Biol. Chem. 234:1971–1975.
Yohe, H., Roark, D. E., andRosenberg, A. 1976. C20-Sphingosine as a determining factor in aggregation of gangliosides. J. Biol. Chem. 251:7083–7087.
Carlisle, R., Patterson, J. I. H., andRoark, D. E. 1974. An automated microcomparator for ultracentrifuge interference fringe measurements. Anal. Biochem. 61:248–263.
Geiger, E., andMüller, H. G. 1943. Substituierte amide der dithiokohlensaure als reagentien auf cupric-ionen. Helv. Chim. Acta 26:996.
Schengrund, C.-L., andRosenberg, A. 1973. Effect, of cations on the sialidase activity of nerve ending membranes. Trans. Am. Soc. Neurochem. 4:90.
Wilkinson, G. N. 1961. Statistical estimations in enzyme kinetics. Biochem. J. 80:324–332.
Manalis, R. S., andCooper, G. P. 1973. Presynaptic and postsynaptic effects of lead at the frog neuromuscular junction. Nature 243:354–356.
Kostial, K., andLandeka, H. 1975. The action of mercury ions on the release of acetylcholine from presynaptic nerve endings. Experientia 31:834–835.
Mukerjee, P. 1967. The nature of the association equilibriums and hydrophobic bonding in aqueous solutions of association colloids. Adv. Colloid Interface Sci. 1:241–275.
Hartree, E. F., andBrown, C. R. 1970. Inhibitory effect of ferrous ions on Warren assay of N-acetyl-neuraminic acid. Anal. Biochem. 35:259–263.
Rosenberg, A., Binnie, B., andChargaff, E. 1960. Properties of a purified sialidase and its action on brain mucolipid. J. Am. Chem. Soc. 82:4113–4114.
Rosenberg, A., andSchengrund, C.-L. 1976. Pages 295–359.in Rosenberg, A., andSchengrund, C.-L. (eds.), Biological Roles of Sialic Acid, Plenum, New York.
Holmquist, L. 1975. Activation ofVibrio cholerae neuraminidase by divalent cations. FEBS Lett. 50:269–271.
Author information
Authors and Affiliations
Additional information
Author to whom correspondence should be sent.
Rights and permissions
About this article
Cite this article
Yohe, H.C., Rosenberg, A. Effect of neurotoxic divalent cations on the activity of the intrinsic nerve ending membrane-associated sialidase of bovine brain. Neurochem Res 3, 101–113 (1978). https://doi.org/10.1007/BF00964363
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00964363