Skip to main content
Log in

Effect of neurotoxic divalent cations on the activity of the intrinsic nerve ending membrane-associated sialidase of bovine brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Exposure to Hg2+ below 10 μM destroys synaptosomal membrane-associated sialidase of bovine brain in situ. Inhibition by Cu2+ occurs only at relatively higher concentrations, and is demonstrable after the synaptosomal nembrane preparation has been presaturated with Cu2+. Pb2+ does not inhibit enzymatic activity. Hg2+ does not exert a significant effect on the free energy of association of monomeric brain gangliosides into aggregates, or on the stability of the aggregate forms, as estimated by ultracentrifugal analysis of the ion-independent moment of ganglioside micelles as a function of concentration. Hg2+ inhibits synaptic membrane sialidase acting both in situ on the native sialocompounds in the membrane, or on exogenous ganglioside. Kinetic analyses of the exogenous activity in membranes exposed to Hg2+ reveal loweredV max values but no substantial change inK m for synaptosomal membrane gangliosides. These findings suggest that the powerful inhibitory effect exerted by Hg2+ on nerve ending membrane sialidase is enzyme directed, not substrate directed. It may be postulated that part of the neurotoxic effect of low levels of Hg2+ stems from an interference with synaptic metabolism by the destruction of membrane-associated sialidase. This enzyme can serve the purpose of modulation of synaptic negative charge density by releasing bound, strongly anionic, sialic acid from highly concentrated sialocompounds in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morgan, E. H., andLaurell, C.-B. 1963. Neuraminidase in mammalian brain. Nature 197:921–922.

    Google Scholar 

  2. Tettamonti, G., Morgan, I. G., Gombos, G., Vincendon, G., andMandel, P. 1972. Sub-synaptosomal localization of brain particulate neuraminidase. Brain Res. 47:515–518.

    PubMed  Google Scholar 

  3. Yohe, H., andRosenberg, A. 1977. Action of intrinsic sialidase of rat brain synaptic membranes on membrane sialolipid and sialoprotein componentsin situ. J. Biol. Chem. 252:2412–2418.

    PubMed  Google Scholar 

  4. Triggle, D. J. 1971. Pages 401–4585,in Neurotransmitter-Receptor Interactions, Academic Press, New York.

    Google Scholar 

  5. Cumings, J. N. 1959. Heavy Metals and the Brain, Charles C Thomas, Springfield, Illinois.

    Google Scholar 

  6. Öhman, R., Rosenberg, A., andSvennerholm, L. 1970. Human brain sialidase. Biochemistry 9:3774–3782.

    PubMed  Google Scholar 

  7. Schengrund, C.-L., andNelson, J. T. 1975. Influence of cation concentration on the sialidase activity on neuronal synaptic membranes. Biochem. Biophys. Res. Commun. 63:217–223.

    PubMed  Google Scholar 

  8. Tulsiani, D. R. P., andCarubelli, R. 1972. Soluble and lysosomal neuroaminidases in the liver of developing chicks. Biochim. Biophys. Acta 284:257–267.

    PubMed  Google Scholar 

  9. Schengrund, C.-L., Jensen, D. S., andRosenberg A. 1972. Localization of sialidase in the plasma membrane of rat liver cells. J. Biol. Chem. 247:2742–2746.

    PubMed  Google Scholar 

  10. Visser, A., andEmmelot, P. 1973. Studies on plasma membranes. XX. Sialidase in hepatic plasma membranes. J. Membr. Biol. 14:73–84.

    PubMed  Google Scholar 

  11. Kishore, G. S., Tulsiani, D. R. P., Bhavanadan, V. P., andCarubelli, R. 1975. Membrane-bound neuraminidases of rat liver. J. Biol. Chem. 250:2655–2659.

    PubMed  Google Scholar 

  12. Behr, J.-P., andLehn, J. M. 1973. The binding of divalent cations by purified gangliosides. FEBS Lett. 31:297.

    PubMed  Google Scholar 

  13. Yohe, H., andRosenberg, A. 1972. Interaction of triiodide anion with gangliosides in aqueous iodine. Chem. Phys. Lipids 9:279–294.

    PubMed  Google Scholar 

  14. Preti, A., Lombardo, A., Cestaro, B., Zambotti, S., andTettamanti, G. 1974. Studies on brain menbrane-bound neuraminidase. I. General properties of the enzyme prepared from calf brain. Biochim. Biophys. Acta 350:406–414.

    PubMed  Google Scholar 

  15. Schengrund, C.-L., andRosenberg, A. 1970. Intracellular location and properties of bovine brain sialidase. J. Biol. Chem. 245:6196–6200.

    PubMed  Google Scholar 

  16. Hartree, E. F. 1972. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48:422–427.

    PubMed  Google Scholar 

  17. Warren, L. 1959. The thiobarbituric acid assay of sialic acids J. Biol. Chem. 234:1971–1975.

    PubMed  Google Scholar 

  18. Yohe, H., Roark, D. E., andRosenberg, A. 1976. C20-Sphingosine as a determining factor in aggregation of gangliosides. J. Biol. Chem. 251:7083–7087.

    PubMed  Google Scholar 

  19. Carlisle, R., Patterson, J. I. H., andRoark, D. E. 1974. An automated microcomparator for ultracentrifuge interference fringe measurements. Anal. Biochem. 61:248–263.

    PubMed  Google Scholar 

  20. Geiger, E., andMüller, H. G. 1943. Substituierte amide der dithiokohlensaure als reagentien auf cupric-ionen. Helv. Chim. Acta 26:996.

    Google Scholar 

  21. Schengrund, C.-L., andRosenberg, A. 1973. Effect, of cations on the sialidase activity of nerve ending membranes. Trans. Am. Soc. Neurochem. 4:90.

    Google Scholar 

  22. Wilkinson, G. N. 1961. Statistical estimations in enzyme kinetics. Biochem. J. 80:324–332.

    PubMed  Google Scholar 

  23. Manalis, R. S., andCooper, G. P. 1973. Presynaptic and postsynaptic effects of lead at the frog neuromuscular junction. Nature 243:354–356.

    PubMed  Google Scholar 

  24. Kostial, K., andLandeka, H. 1975. The action of mercury ions on the release of acetylcholine from presynaptic nerve endings. Experientia 31:834–835.

    PubMed  Google Scholar 

  25. Mukerjee, P. 1967. The nature of the association equilibriums and hydrophobic bonding in aqueous solutions of association colloids. Adv. Colloid Interface Sci. 1:241–275.

    Google Scholar 

  26. Hartree, E. F., andBrown, C. R. 1970. Inhibitory effect of ferrous ions on Warren assay of N-acetyl-neuraminic acid. Anal. Biochem. 35:259–263.

    PubMed  Google Scholar 

  27. Rosenberg, A., Binnie, B., andChargaff, E. 1960. Properties of a purified sialidase and its action on brain mucolipid. J. Am. Chem. Soc. 82:4113–4114.

    Google Scholar 

  28. Rosenberg, A., andSchengrund, C.-L. 1976. Pages 295–359.in Rosenberg, A., andSchengrund, C.-L. (eds.), Biological Roles of Sialic Acid, Plenum, New York.

    Google Scholar 

  29. Holmquist, L. 1975. Activation ofVibrio cholerae neuraminidase by divalent cations. FEBS Lett. 50:269–271.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author to whom correspondence should be sent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yohe, H.C., Rosenberg, A. Effect of neurotoxic divalent cations on the activity of the intrinsic nerve ending membrane-associated sialidase of bovine brain. Neurochem Res 3, 101–113 (1978). https://doi.org/10.1007/BF00964363

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964363

Keywords

Navigation