Neurochemical Research

, Volume 3, Issue 1, pp 101–113 | Cite as

Effect of neurotoxic divalent cations on the activity of the intrinsic nerve ending membrane-associated sialidase of bovine brain

  • Herbert C. Yohe
  • Abraham Rosenberg
Original Articles


Exposure to Hg2+ below 10 μM destroys synaptosomal membrane-associated sialidase of bovine brain in situ. Inhibition by Cu2+ occurs only at relatively higher concentrations, and is demonstrable after the synaptosomal nembrane preparation has been presaturated with Cu2+. Pb2+ does not inhibit enzymatic activity. Hg2+ does not exert a significant effect on the free energy of association of monomeric brain gangliosides into aggregates, or on the stability of the aggregate forms, as estimated by ultracentrifugal analysis of the ion-independent moment of ganglioside micelles as a function of concentration. Hg2+ inhibits synaptic membrane sialidase acting both in situ on the native sialocompounds in the membrane, or on exogenous ganglioside. Kinetic analyses of the exogenous activity in membranes exposed to Hg2+ reveal loweredVmax values but no substantial change inK m for synaptosomal membrane gangliosides. These findings suggest that the powerful inhibitory effect exerted by Hg2+ on nerve ending membrane sialidase is enzyme directed, not substrate directed. It may be postulated that part of the neurotoxic effect of low levels of Hg2+ stems from an interference with synaptic metabolism by the destruction of membrane-associated sialidase. This enzyme can serve the purpose of modulation of synaptic negative charge density by releasing bound, strongly anionic, sialic acid from highly concentrated sialocompounds in the membrane.


Charge Density Sialic Acid Free Energy Divalent Cation Aggregate Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morgan, E. H., andLaurell, C.-B. 1963. Neuraminidase in mammalian brain. Nature 197:921–922.Google Scholar
  2. 2.
    Tettamonti, G., Morgan, I. G., Gombos, G., Vincendon, G., andMandel, P. 1972. Sub-synaptosomal localization of brain particulate neuraminidase. Brain Res. 47:515–518.PubMedGoogle Scholar
  3. 3.
    Yohe, H., andRosenberg, A. 1977. Action of intrinsic sialidase of rat brain synaptic membranes on membrane sialolipid and sialoprotein componentsin situ. J. Biol. Chem. 252:2412–2418.PubMedGoogle Scholar
  4. 4.
    Triggle, D. J. 1971. Pages 401–4585,in Neurotransmitter-Receptor Interactions, Academic Press, New York.Google Scholar
  5. 5.
    Cumings, J. N. 1959. Heavy Metals and the Brain, Charles C Thomas, Springfield, Illinois.Google Scholar
  6. 6.
    Öhman, R., Rosenberg, A., andSvennerholm, L. 1970. Human brain sialidase. Biochemistry 9:3774–3782.PubMedGoogle Scholar
  7. 7.
    Schengrund, C.-L., andNelson, J. T. 1975. Influence of cation concentration on the sialidase activity on neuronal synaptic membranes. Biochem. Biophys. Res. Commun. 63:217–223.PubMedGoogle Scholar
  8. 8.
    Tulsiani, D. R. P., andCarubelli, R. 1972. Soluble and lysosomal neuroaminidases in the liver of developing chicks. Biochim. Biophys. Acta 284:257–267.PubMedGoogle Scholar
  9. 9.
    Schengrund, C.-L., Jensen, D. S., andRosenberg A. 1972. Localization of sialidase in the plasma membrane of rat liver cells. J. Biol. Chem. 247:2742–2746.PubMedGoogle Scholar
  10. 10.
    Visser, A., andEmmelot, P. 1973. Studies on plasma membranes. XX. Sialidase in hepatic plasma membranes. J. Membr. Biol. 14:73–84.PubMedGoogle Scholar
  11. 11.
    Kishore, G. S., Tulsiani, D. R. P., Bhavanadan, V. P., andCarubelli, R. 1975. Membrane-bound neuraminidases of rat liver. J. Biol. Chem. 250:2655–2659.PubMedGoogle Scholar
  12. 12.
    Behr, J.-P., andLehn, J. M. 1973. The binding of divalent cations by purified gangliosides. FEBS Lett. 31:297.PubMedGoogle Scholar
  13. 13.
    Yohe, H., andRosenberg, A. 1972. Interaction of triiodide anion with gangliosides in aqueous iodine. Chem. Phys. Lipids 9:279–294.PubMedGoogle Scholar
  14. 14.
    Preti, A., Lombardo, A., Cestaro, B., Zambotti, S., andTettamanti, G. 1974. Studies on brain menbrane-bound neuraminidase. I. General properties of the enzyme prepared from calf brain. Biochim. Biophys. Acta 350:406–414.PubMedGoogle Scholar
  15. 15.
    Schengrund, C.-L., andRosenberg, A. 1970. Intracellular location and properties of bovine brain sialidase. J. Biol. Chem. 245:6196–6200.PubMedGoogle Scholar
  16. 16.
    Hartree, E. F. 1972. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48:422–427.PubMedGoogle Scholar
  17. 17.
    Warren, L. 1959. The thiobarbituric acid assay of sialic acids J. Biol. Chem. 234:1971–1975.PubMedGoogle Scholar
  18. 18.
    Yohe, H., Roark, D. E., andRosenberg, A. 1976. C20-Sphingosine as a determining factor in aggregation of gangliosides. J. Biol. Chem. 251:7083–7087.PubMedGoogle Scholar
  19. 19.
    Carlisle, R., Patterson, J. I. H., andRoark, D. E. 1974. An automated microcomparator for ultracentrifuge interference fringe measurements. Anal. Biochem. 61:248–263.PubMedGoogle Scholar
  20. 20.
    Geiger, E., andMüller, H. G. 1943. Substituierte amide der dithiokohlensaure als reagentien auf cupric-ionen. Helv. Chim. Acta 26:996.Google Scholar
  21. 21.
    Schengrund, C.-L., andRosenberg, A. 1973. Effect, of cations on the sialidase activity of nerve ending membranes. Trans. Am. Soc. Neurochem. 4:90.Google Scholar
  22. 22.
    Wilkinson, G. N. 1961. Statistical estimations in enzyme kinetics. Biochem. J. 80:324–332.PubMedGoogle Scholar
  23. 23.
    Manalis, R. S., andCooper, G. P. 1973. Presynaptic and postsynaptic effects of lead at the frog neuromuscular junction. Nature 243:354–356.PubMedGoogle Scholar
  24. 24.
    Kostial, K., andLandeka, H. 1975. The action of mercury ions on the release of acetylcholine from presynaptic nerve endings. Experientia 31:834–835.PubMedGoogle Scholar
  25. 25.
    Mukerjee, P. 1967. The nature of the association equilibriums and hydrophobic bonding in aqueous solutions of association colloids. Adv. Colloid Interface Sci. 1:241–275.Google Scholar
  26. 26.
    Hartree, E. F., andBrown, C. R. 1970. Inhibitory effect of ferrous ions on Warren assay of N-acetyl-neuraminic acid. Anal. Biochem. 35:259–263.PubMedGoogle Scholar
  27. 27.
    Rosenberg, A., Binnie, B., andChargaff, E. 1960. Properties of a purified sialidase and its action on brain mucolipid. J. Am. Chem. Soc. 82:4113–4114.Google Scholar
  28. 28.
    Rosenberg, A., andSchengrund, C.-L. 1976. Pages 295– Rosenberg, A., andSchengrund, C.-L. (eds.), Biological Roles of Sialic Acid, Plenum, New York.Google Scholar
  29. 29.
    Holmquist, L. 1975. Activation ofVibrio cholerae neuraminidase by divalent cations. FEBS Lett. 50:269–271.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Herbert C. Yohe
    • 1
  • Abraham Rosenberg
    • 1
  1. 1.Department of Biological Chemistry The M. S. Hershey Medical CenterThe Pennsylvania State UniversityHershey

Personalised recommendations