Acetate metabolism inMethanosarcina barkeri


Methanosarcina barkeri was grown by acetate fermentation in complex medium (N2 gas phase). The molar growth yield was 1.6–1.9 g cells/mol methane formed. Under these conditions 63–82% of the methane produced byMethanosarcina strains was derived from the methyl carbon of acetate, indicating that some methane was derived from other media components. Growth was not demonstrated in complex media lacking acetate or mineral acetate medium containing acetate but lacking H2/CO2, methanol, or trypticase and yeast extract. Acetate metabolism byM. barkeri strain MS was further exmined in mineral acetate medium containing H2/CO2 and/or methanol, but lacking cysteine. Under these conditions, more methane was derived from the methyl carbon of acetate than from the carboxyl carbon. Methanogenesis from the methyl group increased with increasing acetate concentration. The methyl carbon contributed up to 42% of the methane formed with H2/CO2 and up to 5% with methanol. Methanol stimulated the oxidation of the methyl group of acetate to CO2. The average rates of methane formation from acetate were 1.3 nomol/min ·ml/culture (0.04mg2 cell dry weight) in defined media (gas phase H2/CO2) and complex media (gas phase N2). Acetate contributed up to 60% of cell carbon formed under the growth conditions examined. Similar quantities of cell carbon were derived from the methyl and carboxyl carbons of acetate, suggesting incorporation of this compound as a two-carbon unit. Incorporated acetate was not preferentially localized in lipid material, as 70% of the incorporated acetate was found in the wall and protein cell fractions. Acetate catabolism was stimulated by pregrowing of cultures in media containing acetate, while acetate anabolism was not influenced. The results are discussed in terms of the differences between the mechanisms of acetate catabolism and anabolism.

This is a preview of subscription content, log in to check access.



methyl coenzyme M


trichloroacetic acid


coenzyme M (2-mercaptoethane sulfonic acid)


standard potential change (pH 7)

F420 :

Factor 420, a low redox electron carrier


standard free energy change (pH 7)


kilojoules (=0.24 kilocalories)


Weimer's phosphate-buffered basal medium


unknown C1 carrier


  1. Barker, H. A.: Bacterial fermentations, p. 95. New York: Wiley 1956

    Google Scholar 

  2. Bryant, M. P., Tzeng, S. F., Robinson, I. M., Joyner, A. E.: Nutrient requirements of methanogenic bacteria. In: Anaerobic biological treatment processes. Advances in chemistry species, Vol. 105 (F. G. Pohland, ed.), pp. 23–40. Washington, D.C.: American Chemistry Society 1971

    Google Scholar 

  3. Bryant, M. P.: Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutrition25, 1324–1328 (1972)

    Google Scholar 

  4. Cappenberg, T., Prins, H.: Interrelationships between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. III. Experiments with14C-labeled substrates. Antonie van Leeuwenhoek. J. Microbiol. Serol.40, 457–459 (1974)

    Google Scholar 

  5. Daniels, L., Zeikus, J. G.: One carbon metabolism in methanogenic bacteria: Analysis of short-term fixation products of “14CO2” and14CH3OH incorporated into whole cells. J. Bacteriol.136, 75–84 (1978)

    PubMed  Google Scholar 

  6. Fuchs, G., Stupperich, E., Thauer, R. K.: Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum. Arch. Microbiol.117, 61–66 (1978)

    PubMed  Google Scholar 

  7. Gunsalus, R., Eirich, D., Romesser, J., Balch, W., Shapiro, S., Wolfe, R. S.: Methyl transfer and methane formation. In: Proceedings of the Symposium “Microbial Production and Utilization of Gases (H2, CH4, CO)“ (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 191–197, Akademie der Wissenschaften zu Göttingen. Göttingen: Goltze 1976

    Google Scholar 

  8. Hoare, D. S., Hoare, S. L., Moore, R. B.: The photoassimilation of organic compounds by autotrophic blue-green algae. J. Gen. Microbiol.49, 351–370 (1967)

    Google Scholar 

  9. Hungate, R. E.: The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev.14, 1–49 (1950)

    PubMed  Google Scholar 

  10. Ihlenfeldt, M. J. A., Gibson, J.: Acetate uptake by the unicellular cyanobacteriaSynechococcus andAphanocapsa. Arch. Microbiol.113, 231–241 (1977)

    PubMed  Google Scholar 

  11. Jeris, J. S., McCarty, P. L.: The biochemistry of methane fermentation using14C-tracers. J. Water Poll. Control Fed.37, 178–192 (1965)

    Google Scholar 

  12. Kelly, D. P.: The incorporation of acetate by the chemoautotrophThiobacillus neapolitanus strain C. Arch. Mikrobiol.58, 99–116 (1967)

    PubMed  Google Scholar 

  13. Mah, R. A., Smith, M. R., Baresi, L.: Studies on an acetatefermenting strain ofMethanosarcina. Appl. Env. Microbiol.35, 1174–1184 (1978)

    Google Scholar 

  14. Nelson, D. R., Zeikus, J. G.: Rapid method for the radioisotopic analysis of gaseous products of anaerobic metabolism. Appl. Microbiol.28, 258–261 (1974)

    PubMed  Google Scholar 

  15. Rittenberg, S. C.: The obligate autotroph—the demise of a concept. Antonie van Leeuwenhoek J. Microbiol. Serol.38, 457–478 (1972)

    Google Scholar 

  16. Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T., Britton, R. J.: Studies of biosynthesis inEscherichia coli. Carnegie Institute, Washington, D. C. (1957)

    Google Scholar 

  17. Schnellen, G. T. P.: Onderzoekingen over methaangistring. Ph.D. Thesis, Technical Univ. of Delft, De Maastad, The Netherlands (1947)

    Google Scholar 

  18. Smith, P. H., Mah, R. A.: Kinetics of acetate metabolism during sludge digestion. Appl. Microbiol.14, 368–371 (1966)

    PubMed  Google Scholar 

  19. Stadtman, T. C., Barker, H. A.: Studies on the methane fermentation. IX. The origin of methane in the acetate and methanol fermentation byMethanasarcina. J. Bacteriol.61, 81–86 (1951)

    PubMed  Google Scholar 

  20. Taylor, C. D., Wolfe, R. S.: Structure and methylation of coenzyme M (HS−CH2−CH2−SO3). J. Biol. Chem.249, 4879–4885 (1974)

    PubMed  Google Scholar 

  21. Taylor, G. T., Kelly, D. P., Pirt, S. J.: Intermediary metabolism in methanogenic bacteria (Methanobacterium). In: Proceedings of the Symposium “Microbial Production and Utilization of Gases (H2, CH4, CO)” (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 173–180, Akademie der Wissenschaften zu Göttingen. Göttingen: Goltze 1976

    Google Scholar 

  22. Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev.41, 100–180 (1977)

    PubMed  Google Scholar 

  23. Weimer, P. J., Zeikus, J. G.: Fermentation of cellulose and cellobiose byClostridium thermocellum in the absence and presence ofMethanobacterium thermoautotrophicum. Appl. Env. Microbiol.33, 289–297 (1977)

    Google Scholar 

  24. Weimer, P. J., Zeikus, J. G.: One carbon metabolism in methanogenic bacteria. Cellular characterization and growth ofMethanosarcina barkeri. Arch. Microbiol.119, 49–57 (1978)

    PubMed  Google Scholar 

  25. Zehnder, A. J. B., Wuhrmann, K.: Physiology of aMethanobacterium strain AZ. Arch. Microbiol.111, 199–205 (1977)

    Google Scholar 

  26. Zeikus, J. G.: The biology of methanogenic bacteria. Bacteriol. Rev.41, 514–541 (1977)

    PubMed  Google Scholar 

  27. Zeikus, J. G., Weimer, P. J., Nelson, D. R., Daniels, L.: Bacterial methanogenesis: Acetate as a methane precursor in pure culture. Arch. Microbiol.104, 129–134 (1975)

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weimer, P.J., Zeikus, J.G. Acetate metabolism inMethanosarcina barkeri . Arch. Microbiol. 119, 175–182 (1978).

Download citation

Key words

  • Methanogenesis
  • Methylotrophy
  • Methanosarcina
  • Archaebacteria
  • Acetate
  • Anaerobes
  • Methanogens