Archives of Microbiology

, Volume 119, Issue 2, pp 129–133 | Cite as

Pyruvate fermentation in light-grown cells ofRhodospirillum rubrum during adaptation to anaerobic dark conditions

  • H. Voelskow
  • G. Schön


Pyruvate fermentation inRhodospirillum rubrum (strains F1, S1, and Ha) was investigated using cells precultured on different substrates anaerobically in the light and than transferred to anaerobic dark conditions. Pyruvate formate lyase was always the key enzyme in pyruvate fermentation but its activity was lower than in cells which have been precultured aerobically in darkness. The preculture substrate also had a clear influence on the pyruvate formate lyase activity. Strains F1 and S1 metabolized the produced formate further to H2 and CO2. A slight production of CO2 from pyruvate, without additional H2-production, could also be detected. It was concluded from this that under anaerobic dark conditions a pyruvate dehydrogenase was also functioning. On inhibition of pyruvate formate lyase the main part of pyruvate breakdown was taken over by pyruvate dehydrogenase.

When enzyme synthesis was inhibited by chloramphenicol, propionate production in contrast to formate production was not affected. Protein synthesis was not significant during anaerobic dark culture. Bacteriochlorophyll. however, showed, after a lag phase, a clear rise.

Key words

Pyruvate fermentation Rhodospirillum rubrum Pyruvate formate lyase Formate, H2, propionate production 





Coenzyme A


Deutsche Sammlung von Mikroorganismen (Göttingen)


optical density


poly-β-hydroxybutyric acid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, L. E., McClure, W. O.: An improved scintillation cocktail of high-solubilizing power. Anal. Biochem.51, 173–179 (1973)PubMedGoogle Scholar
  2. D'Ans, J., Lax, E.: Taschenbuch für Chemiker und Physiker, 2nd ed., p. 968, Berlin-Göttingen-Heidelberg: Springer 1949Google Scholar
  3. Duncombe, W. G., Rising, T. J.: Schitillation counting of14C from in vitro systems: A comparison of some trapping agents. Anal. Biochem.30, 275–278 (1969)PubMedGoogle Scholar
  4. Gorrell, T. E., Uffen, R. L.: Fermentative metabolism of pyruvate byRhodospirillum rubrum after anaerobic growth in darkness. J. Bacteriol.131, 533–543 (1977)PubMedGoogle Scholar
  5. Gürgün, V.: Untersuchungen über den anaeroben Dunkelstoffwechsel einiger Arten der phototrophen Purpurbakterien. Dissert., Göttingen (1974)Google Scholar
  6. Gürgün, V., Kirchner, G., Pfennig, N.: Vergärung von Pyruvat durch sieben Arten phototropher Purpurbakterien. Z. Allg. Mikrobiol.16, 573–586 (1976)PubMedGoogle Scholar
  7. Jungermann, K., Schön, G.: Pyruvate formate lyase inRhodospirillum rubrum Ha adapted to anaerobic dark conditions. Arch. Microbiol.99, 109–116 (1974)PubMedGoogle Scholar
  8. Kohlmiller, E. F., Gest, H.: A comparative study of the light and dark fermentations of organic acids byRhodospirillum rubrum. J. Bacteriol.61, 269–282 (1951)PubMedGoogle Scholar
  9. Kondratieva, E. N.: Photosynthetic bacteria. Izdatel'stvo Akademii Nauk SSSR, Moskva. Trans: Israel Program for Scientific Translations, Jerusalem, 1965 (1963).Google Scholar
  10. Lindmark, D. G., Paolella, P., Wood, N. P.: The pyruvate formate lyase system ofStreptococcus faecalis. I. Purification and properties of the formate-pyruvate exchange enzyme. J. Biol. Chem.244, 3605–3612 (1977)Google Scholar
  11. Lüderitz, R., Klemme, J.-H.: Isonerung und Charakterisierung eines membrangebundenen Pyruvatdehydrogenase-Komplexes aus dem fakutativ phototrophen BakteriumRhodospirillum rubrum. Z. Naturforsch.32c, 351–361 (1977)Google Scholar
  12. McCormick, N. G., Ordal, E. J., Whiteley, H. R.: Degradation of pyruvate byMicrococcus lactilyticus. II. Studies of cofactors in the formate-exchange reaction. J. Bacteriol.83, 899–906 (1962)Google Scholar
  13. Schön, G.: Fructoserverwertung und Bacteriochlorophyllsynthese in anaeroben Dunkel- und Lichtkulturen vonRhodospirillum rubrum. Arch. Mikrobiol.63, 362–375 (1968)PubMedGoogle Scholar
  14. Schön, G.: Der Einfluß der Reservestoffe auf den ATP-Spiegel in Zellen vonRhodospirillum rubrum beim Übergang von aerober zu anaerober Dunkelkultur. Arch. Mikrobiol.68, 40–50 (1969)PubMedGoogle Scholar
  15. Schön, G., Biedermann, M.: Bildung flüchtiger Säuren bei der Vergärung von Pyruvat und Fructose in anaerober Dunkelkultur vonRhodospirillum rubrum. Arch. Mikrobiol.85, 77–90 (1972)PubMedGoogle Scholar
  16. Schön, G., Ladwig, R.: Bacteriochlorophyllsynthese und Thylakoidmorphogenese in anaerober Dunkelkultur vonRhodospirillum rubrum. Arch. Mikrobiol.74, 356–371 (1970)Google Scholar
  17. Schön, G., Voelskow, H.: Pyruvate fermentation inRhodospirillum rubrum after transfer from aerobic to anaerobic conditions in the dark. Arch. Microbiol.107, 87–92 (1976)PubMedGoogle Scholar
  18. Thauer, R. K., Rupprecht, E., Jungermann, K.: Separation of14C-formate from CO2-fixation metabolites by isoionic-exchange chromatography. Anal. Biochem.38, 461–468 (1970)PubMedGoogle Scholar
  19. Thauer, R. K., Kirchniawy, F. H., Jungermann, K. A.: Properties and function of the pyrivate-formate-lyase reaction in Clostridiae. Eur. J. Biochem.27, 282–290 (1972)PubMedGoogle Scholar
  20. Uffen, R. L., Wolfe, R. S.: Anaerobic growth of purple nonsulphur bacteria under dark conditions. J. Bacteriol.104, 462–472 (1970)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • H. Voelskow
    • 1
  • G. Schön
    • 1
  1. 1.Institut für Biologie II der Universität, Lehrstuhl für MikrobiologieFreiburgFederal Republic of Germany

Personalised recommendations