Skip to main content
Log in

Effects induced by rotenone during aerobic growth ofParacoccus denitrificans in continuous culture

Changes in energy conservation and electron transport associated with NADH dehydrogenase

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Paracoccus denitrificans was grown aerobically in chemostat culture in the presence of rotenone. After 6 to 10 generation times, cells showed an oxygen uptake which was completely rotenone-insensitive after removal of rotenone by washing with bovine serum albumin containing medium.

The →H+/O ratio of these cells for endogenous substrates decreased from about 7.50 to 3.95. The latter ratio was similar to the value obtained for starved cells oxidizing exogenous succinate, indicating that site I phosphorylation was absent in these rotenone-insensitive cells.

Membrane particles prepared from these cells showed an 80% decrease in activity of reduced nicotinamide adenine dinucleotide oxidase and reduced nicotinamide adenine dinucleotide-ferricyanide oxidoreductase, while also the kinetic behaviour of the reduced nicotinamide adenine dinucleotide dehydrogenase in the reduced nicotinamide adenine dinucleotide-ferricyanide oxidoreductase assay was changed. Moreover the reduced nicotinamide adenine dinucleotide oxidase activity was practically rotenone-insensitive.

Electron paramagnetic resonance spectroscopy on membrane particles from rotenone-insensitive cells at 15 K revealed that the resonance lines atg z ≈ 2.05 andg yg x ≈ 1.92 arising from iron-sulfur center 2 were undetectable. The intensities of the other electron paramagnetic resonance signals originating from reduced nicotinamide adenine dinucleotide dehydrogenase linked iron-sulfur centers were only slightly diminished.

These observations confirm our previous suggestion that site I phosphorylation, rotenone sensitivity and the presence of iron-sulfur center 2 are correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EPR:

electron paramagnetic resonance

BSA:

bovine serum albumin

CCCP:

carbonylcyanide m-chlorophenylhydrazone

NAD:

nicotinamide adenine dinucleotide

NADP:

nicotinamide adenine dinucleotide phosphate

ATP:

adenosine triphosphate

References

  • Albracht, S. P. J.: A low-cost cooling device for EPR measurements at 35 GHz down to 4.8° K. J. Magn. Reson.13, 299–303 (1974)

    Google Scholar 

  • Asano, A., Imai, K., Sato, R.: Oxidative phosphorylation inMicrococcus denitrificans. II. The properties of pyridine nucleotide transhydrogenase. Biochim. Biophys. Acta (Amst.)143, 477–486 (1967)

    Google Scholar 

  • Beinert, H.: Iron-sulfur centers of the mitochondrial electron transfer system — Recent developments. In: Iron-sulfur proteins, Vol. 3 (W. Lovenberg, ed), pp. 61–100. New York-San Francisco-London: Academic Press 1977

    Google Scholar 

  • Burnell, J. N., John, Ph., Whatley, F. R.: The reversibility of active sulphate transport in membrane vesicles ofParacoccus denitrificans. Biochem. J.150, 527–536 (1975)

    PubMed  Google Scholar 

  • Chang, J. P., Morris, J. G.: Studies on the utilization of nitrate byMicrococcus denitrifucans. J. Gen. Microbiol.29, 301–310 (1962)

    PubMed  Google Scholar 

  • Clegg, R. A., Garland, P. B.: Non-haem iron and the dissociation of piericidin A sensitivity from site I energy conservation in mitochondria fromTorulopsis utilis. Biochem. J.124, 135–154 (1971)

    PubMed  Google Scholar 

  • Cobley, J. G., Grossman, S., Singer, T. P., Beinert, H.: Piericidin A sensitivity, site I phosphorylation and reduced nicotinamide adenine dinucleotide dehydrogenase during iron-limited growth ofCandida utilis. J. Biol. Chem.250, 211–217 (1975)

    PubMed  Google Scholar 

  • Deutsch, C. J., Kula, T.: Transmembrane electrical and pH gradients ofParacoccus denitrificans and their relationship to oxidative phosphorylation. FEBS Lett87, 145–151 (1978)

    PubMed  Google Scholar 

  • Edwards, C., Spode, J. A., Jones, C. W.: The growth energetics ofParacoccus denitrificans. FEMS Lett.1, 67–70 (1977)

    Google Scholar 

  • Fukami, M. H., Light, P. A., Garland, P. B.: Changes of mitochondrial NADH2 oxidation pathways inCandida utilis grown on acetate. FEBS Lett.7, 132–134 (1970)

    PubMed  Google Scholar 

  • Garland, P. B.: Biochemical applications of continuous culture: energy-conservation mechanisms inTorulopsis utilis. Biochem. J.118, 329–339 (1970)

    PubMed  Google Scholar 

  • Garland, P. B., Clegg, R. A., Downie, J. A., Gray, T. A., Lawford, H. G., Skyrme, J.: Is the NADH dehydrogenase looped? In: Mitochondria: Biogenesis and bioenergetics. Biomembranes: Molecular arrangements and transport mechanisms (S. G. van der Bergh, P. Borst, L. L. M. van Deenen, J. C. Riemersma, E. C. Slater, J. M. Tager, eds.), pp. 105–117. Amsterdam: North-Holland, American Elsevier 1972

    Google Scholar 

  • Gray, T. A., Garland, P. B., Lowe, D. J., Bray, R. C.: Electronparamagnetic resonance spectroscopy studies of iron-sulphur centres of submitochondrial particles of iron- and sulphurdeficientCandida utilis. Biochem. J.146, 239–246 (1975)

    PubMed  Google Scholar 

  • Grossman, S., Cobley, J. G., Singer, T. P., Beinert, H.: Reduced nicotinamide adenine dinucleotide dehydrogenase, piericidin sensitivity, and site I phosphorylation in different growth phases ofCandida utilis. J. Biol. Chem.249, 3819–3826 (1974)

    PubMed  Google Scholar 

  • Gutman, M., Singer, T. P., Casida, J. E.: Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XVII. Reaction sites of piericidin A and rotenone. J. Biol. Chem.245, 1992–1997 (1970)

    PubMed  Google Scholar 

  • Haddock, B. A., Garland, P. B.: Effect of sulphate-limited growth on mitochondrial electron transfer and energy conservation between reduced nicotinamide — adenine dinucleotide and the cytochromes inTorulopsis utilis. Biochem. J.124, 155–170 (1971)

    PubMed  Google Scholar 

  • Horgan, D. J., Singer, T. P., Casida, J. E.: Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIII. Binding sites of rotenone, piericidin A, and amytal in the respiratory chain. J. Biol. Chem.243, 834–843 (1968)

    PubMed  Google Scholar 

  • Imai, K., Asano, A., Sato, R.: Oxidative phosphorylation inMicrococcus denitrificans. V. Effects of iron deficiency on respiratory components and oxidative phosphorylation. J. Biochem. (Tokyo)63, 219–225 (1968)

    Google Scholar 

  • John, Ph., Whatley, F. R.: Oxidative phosphorylation coupled to oxygen uptake and nitrate reduction inMicrococcus denitrificans. Biochim. Biophys. Acta (Amst.)216, 342–352 (1970)

    Google Scholar 

  • John, Ph., Whatley, F. R.: The bioenergetics ofParacoccus denitrificans. Biochim. Biophys. Acta (Amst.)463, 129–153 (1977)

    Google Scholar 

  • Jones, C. W.: Aerobic respiratory systems in bacteria. In: Microbial energetics (B. A. Haddock, W. A. Hamilton, eds.), pp. 23–59. Cambridge: Cambridge University Press 1977

    Google Scholar 

  • Jones, C. W., Brice, J. M., Downs, A. J., Drozd, J. W.: Bacterial respiration-linked proton translocation and its relationship to respiratory-chain composition. Europ. J. Biochem.52, 265–271 (1975)

    PubMed  Google Scholar 

  • Jones, C. W., Brice, J. M., Edwards, C.: The effect of respiratory chain composition on the growth efficiencies of aerobic bacteria. Arch. Microbiol.115, 85–93 (1977)

    PubMed  Google Scholar 

  • Kaplan, N. O.: Pyridine nucleotide transhydrogenase. In: Methods in enzymology, Vol. 2 (S. P. Colowick, N. O. Kaplan, eds.), pp. 681–687. New York: Academic Press 1955

    Google Scholar 

  • Lawford, H. G., Cox, J. C., Garland, P. B., Haddock, B. A.: Electron transport in aerobically grownParacoccus denitrificans: Kinetic characterization of the membrane-bound cytochromes and the stoichiometry of respiration-driven proton translocation. FEBS Lett.64, 369–374 (1976)

    PubMed  Google Scholar 

  • Light, P. A., Garland, P. B.: A comparison of mitochondria fromTorulopsis utilis grown in continuous culture with glycerol, iron, ammonium, magnesium or phosphate as the growth-limiting nutrient. Biochem. J.124, 123–134 (1971)

    PubMed  Google Scholar 

  • Light, P. A., Ragan, C. I., Clegg, R. A., Garland, P. B.: Iron-limited growth ofTorulopsis utilis, and the reversible loss of mitochondrial energy conservation at site I and of sensitivity to rotenone and piericidin A. FEBS Lett.1, 4–8 (1968)

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurements with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)

    PubMed  Google Scholar 

  • Lundin, A., Aasa, R.: A simple device to maintain temperatures in the range 4.2–100 K for EPR measurements. J. Magn. Reson.8, 70–73 (1972)

    Google Scholar 

  • Meijer, E. M., van Verseveld, H. W., van der Beek, E. G., Stouthamer, A. H.: Energy conservation during aerobic growth inParacoccus denitrificans. Arch. Microbiol.112, 25–34 (1977a)

    PubMed  Google Scholar 

  • Meijer, E. M., Wever, R., Stouthamer, A. H.: A study of iron-sulphur proteins in the respiratory chain ofParacoccus denitrificans. Proc. Soc. Gen. Microbiol.4, 77 (1977b)

    Google Scholar 

  • Meijer, E. M., Wever, R., Stouthamer, A. H.: The role of iron-sulfur center 2 in electron transport and energy conservation in the NADH-ubiquinone segment of the respiratory chain inParacoccus denitrificans. Eur. J. Biochem.81, 267–275 (1977c)

    PubMed  Google Scholar 

  • Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev.41, 445–502 (1966)

    PubMed  Google Scholar 

  • Mitchell, P., Moyle, J.: Respiration driven proton translocation in rat liver mitochondria. Biochem. J.105, 1147–1162 (1967)

    Google Scholar 

  • Ohnishi, T.: Studies on the mechanism of site I energy conservation. Eur. J. Biochem.64, 91–103 (1976)

    PubMed  Google Scholar 

  • Ohnishi, T.: Mechanism of electron transport and energy conservation in the site I region of the respiratory chain. Biochim. Biophys. Acta (Amst.)301, 105–128 (1973)

    Google Scholar 

  • Ohnishi, T.: Thermodynamic and EPR characterization of iron-sulfur centers in the NADH-ubiquinone segment of the mitochondrial respiratory chain in pigeon heart. Biochim. Biophys. Acta (Amst.)387, 475–490 (1975)

    Google Scholar 

  • Ohnishi, T., Asakura, T., Yonetani, T., Chance, B.: Electron paramagnetic resonance studies at temperatures below 77° K on iron-sulfur proteins of yeast and bovine heart submitochondrial particles. J. Biol. Chem.246, 5960–5964 (1971)

    PubMed  Google Scholar 

  • Ohnishi, T., Asakura, T., Wohlrab, H., Yonetani, T., Chance, B.: Electron paramagnetic studies on iron-sulfur proteins of submitochondrial particles fromCandida utilis cells. J. Biol. Chem.245, 901–902 (1970)

    PubMed  Google Scholar 

  • Orme-Johnson, N. R., Hansen, R. E., Beinert, H.: Electron paramagnetic resonance-detectable electron acceptors in beef heart mitochondria. Ubihydroquinone-cytochromec reductase segment of the electron transfer system and complex mitochondrial fragments. J. Biol. Chem.249, 1928–1939 (1974a)

    PubMed  Google Scholar 

  • Orme-Johnson, N. R., Orme-Johnson, W. H., Hansen, R. E., Beinert, H.: EPR detectable electron acceptors in submitochondrial particles from beef heart with special reference to the iron-sulfur components of DPNH-ubiquinone reductase. Biochem. Biophys. Res. Commun.58, 178–184 (1974b)

    PubMed  Google Scholar 

  • Orme-Johnson, N. R., Orme-Johnson, W. H., Hansen, R. E., Beinert, H., Hatefi, Y.: EPR detectable electron acceptors in submitochondrial particles from beef heart with special reference to the iron-sulfur components of DPNH-ubiquinone reductase. Biochem. Biophys. Res. Commun.44, 446–453 (1971)

    PubMed  Google Scholar 

  • Scholes, P. B., Mitchell, P.: Respiration-driven proton translocation inMicrococcus denitrificans. J. Bioenerg.1, 309–323 (1970)

    Google Scholar 

  • Singer, T. P., Gutman, M.: The DPNH dehydrogenase of the mitochondrial respiratory chain. In: Advances in enzymology, Vol. 34 (F. F. Nord, ed.), pp. 79–153. New York-London-Sidney-Toronto: Interscience 1971

    Google Scholar 

  • van Verseveld, H. W., Meijer, E. M., Stouthamer, A. H., Energy conservation during nitrate respiration inParacoccus denitrificans. Arch. Microbiol.112, 47–23 (1977)

    Google Scholar 

  • van Verseveld, H. W., Stouthamer, A. H.: Oxidative phosphorylation inMicrococcus denitrificans. Calculation of the P/O ratio in growing cells. Arch. Microbiol.107, 241–247 (1976)

    PubMed  Google Scholar 

  • van Verseveld, H. W., Stouthamer, A. H.: Electron-transport chain and coupled oxidative phosphorylation in methanol-grownParacoccus denitrificans. Arch. Microbiol.118, 13–20 (1978)

    PubMed  Google Scholar 

  • Wever, R., van Drooge, J. H., van Ark, G., van Gelder, B. F.: Biochemical and biophysical studies on cytochromec oxidase. XVII. An EPR study of the photodissociation of cytochromea 2+3 · CO. Biochim. Biophys. Acta (Amst.)347, 215–223 (1974)

    Google Scholar 

  • Witholt, B., Boekhout, M., Brock, M., Kingma, J., van Heerikhuizen, H., de Leij, L.: An efficient and reproducible procedure for the formation of spheroplasts from variously grownEscherichia coli. Anal. Biochem.74, 160–170 (1976)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meijer, E.M., Schuitenmaker, M.G., Boogerd, F.C. et al. Effects induced by rotenone during aerobic growth ofParacoccus denitrificans in continuous culture. Arch. Microbiol. 119, 119–127 (1978). https://doi.org/10.1007/BF00964262

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964262

Key words

Navigation