Skip to main content
Log in

Phospholipid vesicle aggregation induced by human myelin basic protein

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Human myelin basic protein isolated from the brains of individuals who died with multiple sclerosis was more potent in inducing the aggregation of egg phosphatidylcholine vesicles than was the basic protein isolated from the brains of normal individuals. The portion of myelin basic protein which bound to egg phosphatidylcholine vesicles was separated from the free protein by sucrose density gradient centrifugation. Similar amounts of basic protein from normal or from multiple sclerosis brains are bound to the lipid and no consistent differences in the NG, N′G dimethyl-arginine content of the protein fractions have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eylar, E. H., andThompson, M. 1969. Allergic encephalomyelitis: The physico-chemical properties of the basic protein encephalitogen from bovine spinal cord. Arch. Biochem. Biophys. 129:469–479.

    Google Scholar 

  2. Brady, G. W., Murthy, N. S., Fein, D. B., Wood, D. D., andMoscarello, M. A. 1981. The effect of basic myelin protein on multilayer membrane formation. Biophys. J. 34:345–350.

    PubMed  Google Scholar 

  3. Young, P. R., Vacante, D. A., andSynder, W. R. 1982. Protein-induced aggregation of lipid vesicles. Mechanism of the myelin basic protein-myelin interaction. J. Am. Chem. Soc. 104:7287–7291.

    Google Scholar 

  4. Lampe, P. D., Wei, G. J., andNelsestuen, G. L. 1983. Stopped-flow studies of myelin basic protein associated with phospholipid vesicles and subsequent vesicle aggregation. Biochemistry 22:1594–1599.

    PubMed  Google Scholar 

  5. Lampe, P. D., andNelsestuen, G. L. 1982. Myelin basic protein-enhanced fusion of membranes. Biochim. Biophys. Acta 693:320–325.

    PubMed  Google Scholar 

  6. Mateu, L., Luzzatti, V., London, Y., Gould, R. M., Vossenberg, F. G. A., andOlive, J. 1973. X-Ray diffraction and electron microscopic study of the interactions of myelin components. The structure of a lamellar phase with a 150–180 Å repeat distance containing basic proteins and acidic lipids. J. Mol. Biol. 75:697–709.

    PubMed  Google Scholar 

  7. Carnegie, P. R., andMoore, W. J. 1980. Pages 119–143,in Bradshaw, R. A., andSchneider, D. M. (eds.), Proteins of the nervous system, second edition, Raven Press, New York.

    Google Scholar 

  8. Martenson, R. E. 1980. Pages 49–79,in Kumar, S. (ed.), Biochemistry of Brain, Pergamon Press, Oxford.

    Google Scholar 

  9. Brady, G. W., Fein, D. B., Wood, D. D., andMoscarello, M. A. 1981. The interaction of basic proteins from normal and multiple sclerosis myelin with phosphatidylglycerol vesicles. FEBS Letters 125:159–160.

    PubMed  Google Scholar 

  10. Lowden, J. A., Moscarello, M. A., andMorecki, R. 1966. The isolation and characterization of an acid-soluble protein from myelin. Can. J. Biochem. 44:567–577.

    PubMed  Google Scholar 

  11. Bartlett, G. R. 1959. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468.

    PubMed  Google Scholar 

  12. Hess, H. H., Lees, M. B., andDerr, J. E. 1978. A linear Lowry-Folin assay for both water-soluble and sodium dodecyl sulfate-solubilized proteins. Anal. Biochem. 85:295–300.

    PubMed  Google Scholar 

  13. Deber, C. M., Moscarello, M. A., andWood, D. D. 1978. Conformational studies on13C-enriched human and bovine myelin basic protein in solution and incorporated into liposomes. Biochemistry 17:898–903.

    PubMed  Google Scholar 

  14. Keniry, M. A., andSmith, R. 1979. Circular dichroic analysis of the secondary structure of myelin basic protein and derived peptides bound to detergents and to lipid vesicles. Biochim. Biophys. Acta 578:381–391.

    PubMed  Google Scholar 

  15. London, Y., andVossenberg, F. G. A. 1973. Specific interactions of central nervous system myelin basic protein with lipids. Specific regions of the protein sequence protected from the proteolytic action of trypsin. Biochim. Biophys. Acta 307:478–490.

    PubMed  Google Scholar 

  16. Boggs, J. M., andMoscarello, M. A. 1978. Effect of basic protein from human CNS myelin on lipid bilayer structure. J. Membrane Biol. 39:75–96.

    Google Scholar 

  17. Smith, R. 1977. Non-covalent cross-linking of lipid bilayers by myelin basic protein. A possible role in myelin formation. Biochim. Biophys. Acta 470:170–184.

    PubMed  Google Scholar 

  18. Boggs, J. M., andMoscarello, M. A. 1978. Structural organization of the human myelin membrane. Biochem. Biophys. Acta 515:1–21.

    PubMed  Google Scholar 

  19. Epand, R. M., andMoscarello, M. A. 1982. The effects of bovine myelin basic protein on the phase transition properties of sphingomyelin. Biochim. Biophys. Acta 685:230–232.

    PubMed  Google Scholar 

  20. Campbell, I. M., andPawagi, A. B. 1979. Temperature-dependent interactions between poly-l-lysine and phosphatidylcholine vesicle. Can. J. Biochem. 57:1099–1109.

    PubMed  Google Scholar 

  21. Carnegie, P. R. 1971. Amino acid sequence of the encephalitogenic basic protein from human myelin. Biochem. J. 123:57–67.

    PubMed  Google Scholar 

  22. Eylar, E. H., Brostoff, S., Hashim, G., Caccam, J., andBarnett, P. 1971. Basic A1 protein of the myelin membrane. J. Biol. Chem. 246:5770–5784.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridhara, S.I., Epand, R.M. & Moscarello, M.A. Phospholipid vesicle aggregation induced by human myelin basic protein. Neurochem Res 9, 241–248 (1984). https://doi.org/10.1007/BF00964172

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964172

Keywords

Navigation