Neurochemical Research

, Volume 9, Issue 2, pp 207–217 | Cite as

Naltrexone effects on pituitary neurointermediate lobe and median eminence

  • L. C. Saland
  • E. Reyes
  • E. Ortiz
Original Articles

Abstract

The long-acting opiate antagonist naltrexone hydrochloride was administered by intraperitoneal injection, in a dose response protocol, to adult rats. The drug was used to observe effects of opiate receptor blockade on cells of the pituitary gland and adjacent hypothalamus. At higher drug doses (5mg/kg or 10mg/kg), neurites directly innervating pars intermedia cells contained swollen vesicles and disrupted membranous elements. Fibers within the median eminence of the hypothalamus appeared swollen, and contained myelin figures. Despite the consistent degenerative changes appearing in neurites, measurements of levels of dopamine, norepinephrine, and epinephrine in striatum, and hypothalamus did not differ significantly between naltrexone-treated or control animals, although there was a significant elevation of norepinephrine in the pituitary after drug treatment. At all drug dose levels administered, supraependymal neuron-like cells appeared atop the ependyma of the third ventricle above the median eminence. These observations suggest that naltrexone produces specific “neurotoxic” effects on neurites of the tuberoinfundibular system, and may induce changes in the ventricular environment which stimulate the appearance of supraependymal neurons.

Keywords

Naltrexone Median Eminence Opiate Receptor Membranous Element Opiate Antagonist 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gold, M. S., Dackis, C. A., Pottash, A. L. C., Sternback, H. H., Amnitto, W. J., Martin, D., andDackis, M. P. 1982. Naltrexone, opiate addiction and endorphins. Medicinal Res. Review 2–3:211–246.Google Scholar
  2. 2.
    Pert, C. B., Kuhar, M. J., andSnyder, S. H. 1976. Opiate Receptor: Autoradiographic localization in rat brain. Proc. Natl. Acad. Sci. 73:3729–3733.PubMedGoogle Scholar
  3. 3.
    Kent, J. L., Pert, C. B., andHerkenham, M. 1982. Ontogeny of opiate receptors in rat forebrain; Visualization by in vitro autoradiography Devel. Brain Res. 2:487–504.Google Scholar
  4. 4.
    Wise, S. P., andHerkenham, M. 1982. Opiate receptor distribution in the cerebral cortex of the rhesus monkey. Science 218:387–389.PubMedGoogle Scholar
  5. 5.
    Young, W. S., andKuhar, M. J. 1979. A new method for receptor autoradiography: [3H]opioid receptors in rat brain. Brain Res. 179:255–270.PubMedGoogle Scholar
  6. 6.
    Ahmed, H. H., Van Vugt, D. A., Ruiz de Galaretta, C. M., Fanjul, L. F., andMeites, J. 1981. Naltrexone partially inhibits the estrogen-induced increase in prolactin secretion and anterior pituitary weight. Life. Sci. 29:2757–2762.PubMedGoogle Scholar
  7. 7.
    Grandison, L., andGuidotti, A. 1977. Regulation of prolactin release by endogenous opiates. Nature 270:357–358.PubMedGoogle Scholar
  8. 8.
    Meites, J., Bruni, J. F., Van Vugt, D. A., andSmith, A. F. 1979. Relation of en opiate peptides and morphine to neuroendocrine functions. Life. Sci. 24:1325–1336.PubMedGoogle Scholar
  9. 9.
    Mennin, D. P., andSaland, L. C. 1980. Naloxone prevents dark adaptation in amphibians. Neuroendocrinol. 31:385–389.Google Scholar
  10. 10.
    Saland, L. C., andMunger, A. T. 1981. Emergence of supraependymal cells in rat third ventricle after administration of p-chloroamphetamine. Brain Res. Bulletin, 6:517–524.Google Scholar
  11. 11.
    Saland, L. C., Garcia, L., Munger, A. T., McLeod, O., andOrtiz, E. 1982. In vivo effects of naltrexone, a long-acting opiate antagonist, on opiocortin cells of the pituitary intermediate lobe. Anat. Rec. 202:165A.Google Scholar
  12. 12.
    Etkin, W. 1967. Relation of the pars intermedia to the hypothalamus Pages 261–282. inL. Martini andW. F. Ganong (eds.), Neuroendocrinology, vol. II Academic Press, New York.Google Scholar
  13. 13.
    Hadley, M. E., andBagnara, J. T. 1975. Regulation of release and mechanisms of action of MSH. Amer. Zool. 15 (suppl. 1):81–104.Google Scholar
  14. 14.
    Saland, L. C., Mennin, S. P., Selinfreund, R., andRasmussen, P. 1982. Interaction of B-endorphin, naloxone and dopamine: Effects on melanocyte-stimulating hormone secretion of amphibian pituitaries in vitro. Regulatory Peptides 3:371–381.PubMedGoogle Scholar
  15. 15.
    Lightman, S. L., Ninkovic, M., andHunt, S. P. 1982. Localization of [3H] spiperone binding sites in the intermediate lobe of the rat pituitary gland. Neurosci. Letters 32:99–102.Google Scholar
  16. 16.
    Raymond, V., Lepine, J., Giguere, V., Lissitsky, J. C., Cote, J., andLabrie, F. 1981. Parallel stimulation of ACTH, B-LPH + B-endorphin and alpha-MSH release by alpha-adrenergic agents in rat anterior pituitary cells in culture. Mol. and Cellular Endocrinol. 22:295–303.Google Scholar
  17. 17.
    Demarest, K. T., andMoore, K. E. 1979. Lack of a high affinity transport system for dopamine in the median eminence and posterior pituitary. Brain. Res. 171:545–551.PubMedGoogle Scholar
  18. 18.
    Harvey, J. A. 1978. Neurotoxic effect of halogenated amphetamine. Ann. NY Acad. Sci. 305:289–304.PubMedGoogle Scholar
  19. 19.
    Massari, V. J., Tizabi, Y., andSanders-Bush, E. 1978. Evaluation of the neurotoxic effects of p-chloroamphetamine: a histological and biochemical study. Neuropharmacology 17:541–548.PubMedGoogle Scholar
  20. 20.
    Sanders-Bush, E., andSteranka, L. R. 1978. Immediate and long-term effects of p-chloroamphetamine on brain amines. Ann. NY Acad. Sci. 305:208–221.PubMedGoogle Scholar
  21. 21.
    Sanders-Bush, E., Bushing, J., andSulser, F. 1975. Long-term effects of p-chloroamphetamine and related drugs on central serotonergic mechanisms. J. Pharmacol. Exp. Ther. 192:33–41.PubMedGoogle Scholar
  22. 22.
    Saland, L. C., Dail, W. G., andReyes, E. 1980. Effects of p-chloroamphetamine, a serotonin-depleting drug, on the median eminence and pituitary pars intermedia. J. Neurobiol. 11:577–589.PubMedGoogle Scholar
  23. 23.
    Paull, W. K., Scott, D. E., andBoldosser, W. G. 1974. A cluster of supraependymal neurons located within the infundibular recess of the rat third ventricle. Am. J. Anat. 140:129–132.PubMedGoogle Scholar
  24. 24.
    Scott, D. E., andPaull, W. K. 1978. Correlative scanning-transmission electron microscopic examination of the perinatal rat brain. I. The third cerebral ventricle. Cell Tiss. Res. 190:317–336.Google Scholar
  25. 25.
    Deshmukh, P. P., andPhillips, M. I. 1978. Scanning electron microscopy of the median eminence of the rat under different stress conditions. SEM 3:157–162.Google Scholar
  26. 26.
    Gash, D., andScott, D.E. 1980. Fetal hypothalamic transplants in the third ventricle of the adult rat brain: Correlative scanning and transmission electron microscopy. Cell Tiss. Res. 211:191–206.Google Scholar
  27. 27.
    Renault, P. 1981. Treatment of heroin-dependent persons with antagonists: Current status. Pages 11–22, inR. E. Willett andG. Burnett, (eds.), Narcotic Antagonists: Naltrexone Pharmacochemistry and Sustained-Release Preparations NIDA Research Monograph 28.Google Scholar
  28. 28.
    Braude, M. C., andMorrison, J. M. 1976. Preclinical toxicity studies of naltrexone. Pages 16–26, inD. Julius, andP. Renault (eds.),Narcotic Antagonists: Naltrexone Progress Report NIDA Research Monograph 9.Google Scholar
  29. 29.
    Hollister, L. E., Johnson, K., Boukhabza, D. E., andGillespie, H. K. 1982. Aversive effects of naltrexone in subjects not dependent on opiate. Drug and Alcohol Dependence 8:37–41.Google Scholar
  30. 30.
    Hosobuchi, Y., Baskin, D., andWoo, S. K. 1982. Reversal of induced ischemic neurologic defect in gerbils by the opiate antagonist naloxone. Science 215:69–71.PubMedGoogle Scholar
  31. 31.
    Grandison, L., Buchweitz, E., andWeiss, H. R. 1982. Effect of naltrexone on regional brain oxygen consumption in the cat. Brain Res. 233:369–379.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • L. C. Saland
  • E. Reyes
    • 1
  • E. Ortiz
  1. 1.Departments of Anatomy and PharmacologyUniversity of New Mexico School of MedicineAlbuquerque

Personalised recommendations