Neurochemical Research

, Volume 9, Issue 3, pp 325–331 | Cite as

Lesion-induced catecholaminergic sprouting in the interpeduncular nucleus

  • Zehava Gottesfeld
Original Articles


This work examined the capacity of intact catecholaminergic axon terminals to sprout in the partially deafferented interpeduncular nucleus (IPN). The results show that norepinephrine and dopamine levels were markedly increased in the IPN 6 weeks after bilateral habenula (Hb) lesions. These changes were accompanied by intensified fluorescence of sprouting axon terminals, as demonstrated by fluorescent histochemistry. The results suggest that both noradrenergic (NA) and dopaminergic neuronal systems respond concomitantly to removal of converging but heterogeneous input to the IPN.


Dopamine Norepinephrine Axon Terminal Neuronal System Dopamine Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Briggs, T. L., andKaelber, W. W. 1971. Efferent fiber connections of the dorsal and deep tegmental nuclei of Gudden. An experimental study in the cat. Brain Res. 29:17–29.Google Scholar
  2. 2.
    Contestabile, A., andFlumerfelt, B. A. 1981. Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulo-interpeduncular pathway: An HRP study in the rat. J. Comp. Neurol. 196:253–270.Google Scholar
  3. 3.
    Coyle, J., andHenry, D. 1973. Catecholamines in the fetal and newborn rat brain. J. Neurochem. 21:61–67.Google Scholar
  4. 4.
    De La Torre, J. C., andSurgeon, J. W. 1976. A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: the SPG method. Histochemistry 49:81–93.Google Scholar
  5. 5.
    Fonnum, F. 1975. A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24:407–409.Google Scholar
  6. 6.
    Fuxe, K. 1975. Evidence for the existence of monoamine-containing neurons in the central nervous system. IV. distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand. 64, suppl. 247:35–85.Google Scholar
  7. 7.
    Gottesfeld, Z. 1980. Sprouting of noradrenergic axon terminals in the partially deafferented habenula. Brain Res. 191:559–563.Google Scholar
  8. 8.
    Gottesfeld, Z., andJacobowitz, D. M. 1978. Cholinergic projection of the diagonal band to the interpeduncular nucleus of the rat brain. Brain Res. 156:329–332.Google Scholar
  9. 9.
    Herkenham, M., andNauta, W. J. H. 1979. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 187:19–48.Google Scholar
  10. 10.
    Kataoka, K., Nakamura, Y., andHassler, R. 1973. Habenulo-interpeduncular tract: a possible cholinergic neuron in rat brain. Brain Res. 61:264–267.Google Scholar
  11. 11.
    Konig, J. F. R., andKlippel, R. A. 1963. The Rat Brain: A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem. Williams and Wilkins, Baltimore.Google Scholar
  12. 12.
    Lenn, N. J. 1976. Synapses in the interpeduncular nucleus: electron microscopy of normal and habenula lesioned rats. J. Comp. Neur. 166:73–100.Google Scholar
  13. 13.
    Lenn, N. J., Wong, V., andHamill, G. 1979. Quantitative demonstration of somatic synapse sprouting following dendritic deafferentation in neonatal rat interpeduncular nucleus. Brain Res. Bull. 4:843–848.Google Scholar
  14. 14.
    Lenn, N. J., andWong, V. 1980. Electron microscopic demonstration of caudal afferents to the rat interpeduncular nucleus. Neuroscience 5:875–881.Google Scholar
  15. 15.
    Levitt, P., andMoore, R. Y. 1979. Origin and organization of brain stem catecholamine innervation in the rat. J. Comp. Neurol. 186:505–528.Google Scholar
  16. 16.
    Lindvall, O., andBjorklund, A. 1978. Organization of catecholamine neurons in the rat central nervous system. Pages 139–231in L. L. Iversen, S. D. Iversen, andS. H. Snyder, (eds.), Handbook of Psychopharmacology, Vol. 9, Plenum Press, New York.Google Scholar
  17. 17.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  18. 18.
    Marchand, R., Riley, J. N., andMoore, R. Y. 1978. Afferents to the interpeduncular nucleus of the rat. Neuroscience Abs. 4:224.Google Scholar
  19. 19.
    Mata, M. M., Schrier, B. K., andMoore, R. Y. 1979. Interpeduncular nucleus: Differential effects of habenula lesions on choline acetyltransferase and glutamic acid decarboxylase. Exp. Neurol. 57:913–921.Google Scholar
  20. 20.
    Mroz, E. A., Brownstein, M. J., andLeeman, S. E. 1976. Evidence for substance P in the habenulo-interpeduncular tract. Brain Res. 113:597–599.Google Scholar
  21. 21.
    Murray, M., Zimmer, J., andRaisman, G. 1979. Quantitative electron microscopic evidence for reinnervation in the adult rat interpeduncular nucleus after lesions of the fasciculus retrofluxus. J. Comp. Neur. 187:447–468.Google Scholar
  22. 22.
    Nojyo, Y., andSano, Y. 1978. Ultrastructure of the serotonergic nerve terminals in the suprachiasmatic and interpeduncular nuclei of rat brains. Brain Res. 149:482–488.Google Scholar
  23. 23.
    Ungerstedt, U. 1971. Stereotaxic mapping of the monoamines pathways in the rat brain. Acta physiol. Scand. Suppl. 367:1–48.Google Scholar
  24. 24.
    Vincent, S. R., Staines, W. A., McGeer, E. G., andFibiger, H. C. 1980. Transmitters contained in the efferents of the habenula. Brain Res. 195:479–484.Google Scholar
  25. 25.
    Zimmer, J. 1974. Proximity as a factor in the regulation of aberrant axonal growth in postnatally deafferented fascia dentata. Brain Res. 72:137–142.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Zehava Gottesfeld
    • 1
  1. 1.Department of Neurobiology and AnatomyUniversity of Texas Medical School at HoustonHouston

Personalised recommendations