Skip to main content
Log in

Cytotoxic effects of methylnitrosourea on developing brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of methylnitrosourea (MNU) on cerebellar and cerebral DNA, RNA, protein, lysosomal enzymes (acid DNase, RNase, phosphatase, and beta-glucuronidase), and 2′,3′-cyclic nucleotide 3′-phosphohydrolase (2′,3′-CNPase) activities was studied in rats from birth through 12 days of age. Subcutaneous injection of MNU in a dose of 0.625 mmol/kg caused a suppression of increase in weights and content of DNA, RNA, and protein of cerebellum, but no changes in those of the cerebrum or in body weight. Ratios of protein and RNA to DNA were substantially elevated by MNU in the cerebellum but not in the cerebrum.

Acid DNase and acid RNase activities of MNU-treated rats were significantly elevated beyond the increase of these activities in controls in the cerebellum, but no change in these activities by MNU was observed in the cerebrum. A slight elevation in acid phosphatase activity was observed in the cerebellum but not in the cerebrum after MNU pretreatment. Beta-glucuronidase and 2′,3′-CNPase activities were not changed in the cerebellum or in the cerebrum. These results suggest that in the developing brain, especially in the cerebellum at the mitotic stage, MNU caused cell damage and inhibited cell mitosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandrov, W. A. 1969. Transplacental blastomogenic action of N-nitrosomethylurea in rat offspring. Problem of oncology 15:55–61.

    Google Scholar 

  2. Allfrey, V. G., andMirsky, A. E. 1952. Some aspects of the deoxyribonuclease activities of animal tissues. J. Gen. Physiol. 36:227–241.

    Google Scholar 

  3. Balazs, R., Kovacs, S., Teichgraber, R., Cocks, W. A., andEayrs, J. T. 1968. Biochemical effects of thyroid deficiency on the developing brain. J. Neurochem. 15:1335–1349.

    Google Scholar 

  4. Bosch, D. A., Gerrits, P. O., andEbels, E. J. 1972. The cytotoxic effect of ethylnitrosourea and methylnitrosourea on the nervous system of the rat at different stages of development. Z. Krebsforsch 77:308–318.

    Google Scholar 

  5. Bosch, D. A., Ipema, A., andEbels, E. J. 1973. Different cytotoxic effects of methyl- and ethylnitrosourea on developing rat tissues and the influence of cycloheximide on cell death. Z. Krebsforsch 79:255–266.

    Google Scholar 

  6. Bosch, D. A. 1977. Short and long term effects of methyl-and ethylnitrosourea (MNU & ENU) on the developing nervous system of the rat. Acta Neurol. Scand. 55:106–122.

    Google Scholar 

  7. Burton, K. 1956. A study of the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62:315–323.

    Google Scholar 

  8. Druckrey, H., Ivankovic, S., undPreussman, R. 1965. Selektive Erzeugung maligner Tumoren im Gehirn und Rückenmark von Ratten durch N-Methyl-N-nitrosoharnstoff. Z. Krebsforsch. 66:389–408.

    Google Scholar 

  9. Druckrey, H., Ivankovic, S., andGimmy, J. 1973. Cancerogene Wirkung von Methyl- und Äthylnitrosoharnstoff (MNH und ÄNH) nach einmaliger intracerebraler bzw. intracarotidaler injektion bei neugeborenen und jungen BD-Ratten. Z. Krebsforsch. 79:282–297.

    Google Scholar 

  10. Druckrey, H., Preussman, R., andIvakovic, S. 1969. N-nitroso compounds in organotropic and transplacental carcinogenesis. Ann. N. Y. Acad. Sci. 163:676–696.

    Google Scholar 

  11. Garrett, E. R., Goto, S., andStubbins, J. F. 1965. Kinetics of solvolyses of various N-alkyl-N-nitrosoureas in neutral and alkaline solutions. J. Pharm. Sci. 54:119–123.

    Google Scholar 

  12. Ittel, M. E., andMandel, P. 1977. Nuclear ribonuclease activities of rat brain during postnatal development. J. Neurochem. 28:1355–1358.

    Google Scholar 

  13. Kurihara, T., andTsukada, Y. 1967. The regional and subcellular distribution of 2′-3′-cyclic nucleotide 3′-phosphohydrolase in the central nervous system. J. Neurochem. 14:1167–1174.

    Google Scholar 

  14. Kurihara, T., Nussbaum, J. L., andMandel, P. 1970. 2′,3′-cyclic nucleotide 3′-phosphohydrolase in brains of mutant mice with deficient myelination. J. Neurochem. 17:993–997.

    Google Scholar 

  15. Lehman, I. R. 1967. Deoxyribonucleases: their relation to deoxyribonucleic acid synthesis. Ann. Rev. Biochem. 36:645–668.

    Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandell, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  17. Matthieu, J. M., Quarles, R. H., De F. Webster, H., Hogan, E. L., andBrady, R. O. 1974. Characterization of the fraction obtained from the CNS (central nervous system) of Jimpy mice by a procedure for myelin isolation. J. Neurochem. 23:517–523.

    Google Scholar 

  18. McDonald, M. R. 1955. Ribonucleases methods in enzymology. Meth. Enzymol. 2:427–447.

    Google Scholar 

  19. McCalla, D. R., Renver, A., andKitar, R. 1968. Inactivation of biologically active N-methyl-N-nitroso compounds in aqueous solution: effect of various conditions of PH and illumination. Canad. J. Biochem. 46:807–811.

    Google Scholar 

  20. Mejbaum, W. 1939. Estimation of small amounts of pentose especially in derivatives of adenylic acid. Z. Physiol. Chem. 258:117–120.

    Google Scholar 

  21. Mirault, M. E., andScherrer, K. 1972. In vitro processing of Hela cell peribosomes by a nucleolar endoribonuclease. Fed. Eur. Biochem. Soc. Lett. 20:233–238.

    Google Scholar 

  22. Rabié, A., Matrat, M. S., Clavel, M. C., Clos, J., andLegrand, J. 1977. Effects of methylazoxymethanol given at different stages of postnatal life on development of the rat brain: Comparison with those of thyroid deficiency. J. Neurobiol. 8:337–354.

    Google Scholar 

  23. Robins, E., Hirsch, H. E., andEmmons, S. S. 1968. Glycosidases in the nervous system. J. B. C. 243:4246–4252.

    Google Scholar 

  24. Schreiber, D., Jänisch, W., Scholtze, P., andTausch, H. 1968. Experimentelle Tumoren des Zentralnervensystems. Naturwissenschaft 55:495.

    Google Scholar 

  25. Schmidt, G., andThannhauser, S. J. 1945. A method for the determination of deoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues. J. Biol. Chem. 161:83–89.

    Google Scholar 

  26. Shirivastaw, K. P. andSubba Rao, K. 1975. Changes in the levels of DNA, RNA, protein and DNases in developing and old chick brain. J. Neurochem. 25:861–865.

    Google Scholar 

  27. Sprinkle, T. J., Zaruba, M. E., andMckhann, G. M. 1978. Activity of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in regions of rat brain during development. J. Neurochem. 30:309–314.

    Google Scholar 

  28. Subba Rao, K. 1973. Acid deoxyribonuclease activity in developing rat brain. Life Sci. 12:89–96.

    Google Scholar 

  29. Sung, S. C. 1971. Thymidine kinase in the developing rat brain. Brain Res., 35:268–271.

    Google Scholar 

  30. Swann, P. F. 1968. The rate of breakdown of methyl methanesulphonate, dimethyl sulphonate and N-methyl-N-nitrosourea in the rat. Biochem. J. 110:49–52.

    Google Scholar 

  31. Wasterlein, C. G., andPlum, F. 1973. Vulnerability of developing rat brain to electroconvulsive seizures. Arch. Neurol. 29:38–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimori, K., Sunouchi, M., Inoue, K. et al. Cytotoxic effects of methylnitrosourea on developing brain. Neurochem Res 8, 193–206 (1983). https://doi.org/10.1007/BF00963920

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963920

Keywords

Navigation