Skip to main content
Log in

Nuclear-magnetic-resonance imaging of leaves ofMesembryanthemum crystallinum L. plants grown at high salinity

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Differences in water binding were measured in the leaf cells ofMesembryanthemum crystallinum L. plants grown under high-salinity conditions by using nuclear-magnetic-resonance (NMR) imaging. The 7-Tesla proton NMR imaging system yielded a spatial resolution of 20·20·100 μm3. Images recorded with different spin-echo times (4.4 ms to 18 ms) showed that the water concentrations in the bladder cells (located on the upper and lower leaf surface), in the mesophyll cells and in the water-conducting vessels were nearly identical. All of the water in the bladder cells and in the water-conducting vessels was found to be mobile, whilst part of the water in the mesophyll cells was bound. Patches of mesophyll cells could be identified which bound water more strongly than the surrounding mesophyll cells. Optical investigations of leaf cross-sections revealed two types of mesophyll cells of different sizes and chloroplast contents. It is therefore likely that in the small-sized mesophyll cells water is strongly bound. A long-term asymmetric water exchange between the mesophyll cells and the bladder cells during Crassulacean acid metabolism has been described in the literature. The high density of these mesophyll cells in the lower epidermis is a possible cause of this asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM:

Crassulacean acid metabolism

NMR:

nuclear magnetic resonance

TE :

spin-echo time

References

  • Aguayo, J., Blackband, S., Schoeniger, J., Mattingly, M., Hintermann, M. (1986) Nuclear magnetic resonance imaging of a single cell. Nature322, 190–191

    Google Scholar 

  • Bloch, F. (1946) Nuclear induction. Phys. Rev.70, 460–474

    Google Scholar 

  • Bottomley, P.A., Foster, T.H., Argersinger, R.E., Pfeifer, L.H. (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: Dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med. Phys.11, 425–448

    Google Scholar 

  • Bottomley, P.A., Rogers, H.H., Foster, T.H. (1986) NMR imaging shows water distribution and transport in plant root systems in situ. Proc. Natl. Acad. Sci. USA83, 87–89

    Google Scholar 

  • Connelly, A., Lohman, J.A.B., Loughman, B.C., Quiquampoix, H., Ratcliffe, R.G. (1987) High resolution imaging of plant tissues by NMR. J. Exp. Bot.38, 1713–1723

    Google Scholar 

  • Eccles, C.D., Callaghan, P.T. (1986) High-resolution imaging. The NMR microscope. J. Magn. Reson.68, 393–398

    Google Scholar 

  • Engmann, K.F. (1934) Studien über die Leistungsfähigkeit der sukkulenter Pflanzen. Beih. Bot. Cbl.52a, 381–414

    Google Scholar 

  • Fullerton, G.D., Potter, J.L., Dornbluth, N.C. (1982) NMR relaxation of protons in tissues and other macromolecular water solutions. Magn. Reson. Imag.1, 209–228

    Google Scholar 

  • Haberlandt, G. (1918) Physiologische Pflanzenanatomie. W. Engelmann Verlag, Leipzig

    Google Scholar 

  • Hüsken, D., Steudle E., Zimmermann, U. (1978) Pressure probe technique for measuring water relations of cells in higher plants. Plant Physiol.61, 158–163

    Google Scholar 

  • Johnson, G.A., Brown, J., Kramer, P.J. (1987) Magnetic resonance microscopy of changes in water content in stems of transpiring plants. Proc. Natl. Acad. Sci. USA84, 2752–2755

    Google Scholar 

  • Kramer, D. (1979) Ultrastructural observations on developing leaf bladder cells ofMesembryanthemum crystallinum L.. Flora168, 193–204

    Google Scholar 

  • Lauterbur, P.C. (1973) Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature242, 190–191

    Google Scholar 

  • Lüttge, U., Fischer, E., Steudle, E. (1978) Membrane potential and salt distribution in epidermal bladders and photosynthetic tissue ofMesembryanthemum crystallinum. Plant Cell Environ.1, 121–129

    Google Scholar 

  • Mansfield, P., Morris, P.G. (1982) NMR imaging in biomedicine. Academic Press, New York

    Google Scholar 

  • Metcalfe, C.R., Chalk, L. (1950) Ficoidaceae. Anatomy of the dicotyledons, vol. I, pp. 706–711. Claredon Press, Oxford

    Google Scholar 

  • Oberstein, O. (1913) Über den Bau der Blattspitzen der Mesembrianthema-Barbata. Beih. Bot. Cbl.29, 298–302

    Google Scholar 

  • Rygol, J., Büchner, K.-H., Winter, K., Zimmermann, U. (1986) Day night variations in turgor pressure in individual cells ofMesembryanthemum crystallinum L.. Oecologia69, 171–175

    Google Scholar 

  • Rygol, J., Zimmermann, U., Balling, A. (1989) Water relations of individual leaf cells ofMesembryanthemum crystallinum at high and low external salinity. J Membr. Biol.107, 203–212

    Google Scholar 

  • Schuhmacher, J.H., Clorius, J.H., Semmler, W., Hauser, H., Matys, E.R., Maier-Borst, W., Hull, W.E. (1987) NMR relaxation times T1 and T2 of water in plasma from patients with long carcinoma: Correlation of T2 with blood sedimentation rate. Magn. Reson. Med.5, 537–547

    Google Scholar 

  • Stejskal, E.O., Tanner, J.E. (1965) Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys.42, 288–292

    Google Scholar 

  • Steudle, E., Jeschke, W.D. (1983) Water transport in barley roots. Planta158, 237–248

    Google Scholar 

  • Steudle, E., Lüttge, U., Zimmermann, U. (1975) Water relations of the epidermal bladder cells of the halophytic speciesMesembryanthemum crystallinum: Direct measurements of hydrostatic pressure and hydraulic conductivity. Planta126, 229–246

    Google Scholar 

  • Steudle, E., Zimmermann, U. (1971) Hydraulische Leitfähigkeit vonValonia utricularis. Z. Naturforsch.26b, 1302–1311

    Google Scholar 

  • Winter, K. (1973) CO2-Fixierungsreaktionen bei der SalzpflanzeMesembryanthemum crystallinum unter variierten Außenbedingungen. Planta114, 75–85

    Google Scholar 

  • Winter, K. (1985) Crassulacean acid metabolism. In: Photosynthetic mechanisms and the environment, pp. 329–387, Barber, J., Baker, N.R., eds. Elsevier, Amsterdam

    Google Scholar 

  • Zimmermann, U. (1978) Physics of turgor- and osmoregulation. Annu. Rev. Plant Physiol.29, 121–148

    Google Scholar 

  • Zimmermann, U. (1988) Determination of water relations of plant cells by means of the pressure probe technique. Methods Enzymol. (in press)

  • Zimmermann, U., Hüsken, D., Schulze, E.D. (1980) Direct turgor pressure measurements in different leaf cells ofTradescantia virginiana. Planta149, 445–453

    Google Scholar 

  • Zimmermann, U., Raede, H., Steudle, E. (1969) Kontinuierliche Druckmessung in Pflanzenzellen. Naturwissenschaften56, 634–635

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, L., Balling, A., Zimmermann, U. et al. Nuclear-magnetic-resonance imaging of leaves ofMesembryanthemum crystallinum L. plants grown at high salinity. Planta 178, 524–530 (1989). https://doi.org/10.1007/BF00963822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963822

Key words

Navigation