Skip to main content
Log in

Measurement of internal pH in the coccolithophoreEmiliania huxleyi using 2′,7′-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein acetoxymethylester and digital imaging microscopy

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Internal pH (pHi) was determined inEmiliania huxleyi (Lohmann) using the probe 2′,7′-bis-(2-carboxyethyl)-5(and-6)carboxyfluoresceinacetoxymethylester (BCEF-AM) and digital imaging microscopy. The probe BCECF-AM was taken up and hydrolysed to the free acid by the cells. A linear relationship was established between pHi and the 490/450 fluorescence ratio of BCECF-AM over the pH range 6.0 to 8.0 using the ionophore nigericin. Two distinct pH domains were identified within the cell, the cytoplasmic domain (approx. pH 7.0) and the chloroplast domain (approx. pH 8.0). The average pHi was 7.29 (±0.11) for cells in the presence of 2 mM HCO 3 . In the absence of HCO 3 the pHi was decreased by 0.8 pH unit. The importance of these changes in pHi is considered in relation to inorganic-carbon uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

acetoxymethylester

BCECF:

2′,7′-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein

Hepes:

4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid

pHi :

intracellular pH

References

  • Beardall, J. (1981) CO2 accumulation byChlorella saccharophila (Chlorophyceae) at low external pH: evidence for active transport of inorganic carbon at the chloroplast envelope. J. Phycol.17, 371–373

    Google Scholar 

  • Beardall, J., Raven, J.A. (1981) Transport of inorganic carbon and the “CO2 concentrating mechanism” inChlorella emersonii (Chlorophyceae). J. Phycol.17, 134–141

    Google Scholar 

  • Bright, G.R., Fisher, G.W., Rogowska, J., Lansing-Taylor, D. (1987) Fluorescence ratio imaging microscopy: Temporal and spatial measurements of cytoplasmic pH. J. Cell Biol.104, 1019–1033

    Google Scholar 

  • Brownlee, C., Pulsford, A. (1989) Visualization of the cytoplasmic Ca2+ gradient inFucus serratus rhizoids: Correlation with cell ultrastructure and polarity. J. Cell. Sci. (in press)

  • Brownlee, C., Wood, J.W., Briton, D. (1987) Cytoplasmic free calcium in single cells of centric diatoms. The use of Fura-2. Protoplasma.140, 118–122

    Google Scholar 

  • Burns, B. D., Beardall, J. (1987) Utilization of inorganic carbon by marine microalgae. J. Exp. Mar. Biol. Ecol.107, 75–86

    Google Scholar 

  • Bush, D.S., Jones, R.L. (1987) Measurement of cytoplasmic calcium in aleurone protoplasts using indo-1 and fura-2. Cell Calcium8, 455–472

    Google Scholar 

  • Clarkson, D.T., Brownlee, C., Ayling, S.M. (1988) Cytoplasmic calcium measurements in intact higher plant cells: results from fluorescence ratio imaging of fura-2. J. Cell Sci.91, 71–80

    Google Scholar 

  • Colman, B., Gehl, K.A. (1983) Physiological characteristics of photosynthesis inPorphyridium cruentum: evidence for bicarbonate transport in a unicellular red alga. J. Phycol.19, 216–219

    Google Scholar 

  • Dixon, G.K., Patel, B.N., Merrett, M.J. (1987) Role of intracellular carbonic anhydrase in inorganic-carbon assimilation byPorphyridium purpureum. Planta172, 508–513

    Google Scholar 

  • Grynkiewicz, G., Poenie, M., Tsien, R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem.260, 3440–3450

    Google Scholar 

  • Heber, U., Heldt, H.W. (1981) The chloroplast envelope: structure, function and role in leaf metabolism. Annu. Rev. Plant Physiol.32, 139–168

    Google Scholar 

  • Holligan, P.M., Viollier, M., Harbour, D.S., Camus, P., Champagne-Philippe, M. (1983) Satelite and ship studies of coccolithophore production along a continental shelf edge. Nature304, 339–342

    Google Scholar 

  • L'Allemain, G., Paris, S., Pouyssegur, J. (1985) Role of a Na+ dependent Cl/HCO 3 exchange in regulation of intracellular pH in fibroblasts. J. Biol. Chem.260, 4877–4883

    Google Scholar 

  • McIntyre, A., Bé, A.W.H. (1967) Modern coccolithophorides of the Atlantic Ocean I. Placoliths and cystoliths. Deep-Sea Res.14, 561–597

    Google Scholar 

  • Olsnes, S., Tonnessen, T.I., Sandvig, K. (1986) pH-regulated anion antiport in nucleated mammalian cells. J. Cell Biol.102, 967–971

    Google Scholar 

  • Paradiso, A.M., Tsien, R.Y., Machen, T.E. (1987) Digital image processing of intracellular pH in gastric oxyntic and chief cells. Nature325, 447–450

    Google Scholar 

  • Paasche, E. (1968) Biology and physiology of Coccolithophorids. Annu Rev. Microbiol.22, 71–86

    Google Scholar 

  • Patel, B.N., Merrett, M.J. (1986) Inorganic-carbon uptake by the marine diatomPhaeodactylum tricornutum. Planta169, 222–227

    Google Scholar 

  • Pentecost, A. (1985) Calcification and DIC metabolism. In: Inorganic carbon uptake by aquatic photosynthetic organisms, pp. 459–480, Lucas, W.J., Berry, J.A., eds. American Society of Plant Physiologists

  • Provasoli, L., McLaughlin, J.J.A., Droop, M.R. (1957) The development of artificial media for marine algae. Arch. Mikrobiol.25, 392–428

    Google Scholar 

  • Raven, J.A. (1980) Nutrient transport in microalgae. Adv. Microb. Physiol.21, 47–226

    Google Scholar 

  • Raven, J.A., Smith, F.A. (1980) Intracellular pH regulation in the giant-celled marine algaChaetomorpha darwinii. J. Exp. Bot.31, 1357–1369

    Google Scholar 

  • Rees, T.A.V. (1984) Sodium dependent photosynthetic oxygen evolution in a marine diatom. J. Exp. Bot.35, 332–337

    Google Scholar 

  • Rink, T.J., Tsien, R.Y., Pozzan, T. (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol.95, 189–196

    Google Scholar 

  • Roos, A., Boron, W.F. (1981) Intracellular pH. Physiol. Rev.61, 296–434

    Google Scholar 

  • Sikes, C.S., Wilbur, K.M. (1982) Functions of coccolith formation. Limnol. Oceanogr27, 18–26

    Google Scholar 

  • Sikes, C.S., Roer, R.D., Wilbur, K.M. (1980) Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition. Limnol. Oceanogr.25, 248–261

    Google Scholar 

  • Smith, F.A. (1979) Comparison of the effects of ammonia and methylamine on chloride transport and intracellular pH inChara corallina. J. Exp. Bot.31, 597–606

    Google Scholar 

  • Thomas, R.C. (1982) Snail neuron intracellular pH regulation. In: Intracellular pH: Its measurement, regulation and utilisation in cellular functions, pp. 189–204, Nuctelli, R., Deamer, D.W., eds. A.R. Liss. Inc., New York

    Google Scholar 

  • Tromballa, H.W. (1983) The effect of CO2 on potassium transport byChlorella fusca. Plant Cell Environ.6, 537–543

    Google Scholar 

  • Werdan, K., Heldt, H.W., Mlovanceu, M. (1975) The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim. Biophys. Acta.396, 276–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, G.K., Brownlee, C. & Merrett, M.J. Measurement of internal pH in the coccolithophoreEmiliania huxleyi using 2′,7′-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein acetoxymethylester and digital imaging microscopy. Planta 178, 443–449 (1989). https://doi.org/10.1007/BF00963813

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963813

Key words

Navigation