Neurochemical Research

, Volume 4, Issue 3, pp 399–410 | Cite as

Distribution of opiate-like substances in rat tissues

  • A. Neidle
  • I. Manigault
  • I. J. Wajda
Original Articles


Rat tissues were tested for their ability to inhibit the binding of [3H]dihydromorphine or [3H]naloxone to membrane-bound opiate receptors. By this criterion, morphine-like substances were found in lung, heart, liver, and kidney as well as in brain. The relative activity of the extracts, based on initial tissue weight, differed with the radioactive ligand employed. With dihydromorphine, the order was as above. With naloxone, lung was most active, followed by heart, brain, liver, and kidney. The ability of all tissue extracts to inhibit opiate binding was reduced by 100 mM NaCl and slightly reduced by 1 mM MnCl2. Gel filtration using Sephadex G-25 indicated that the inhibitory Substances were heterogeneous in molecular weight. Only with brain and kidney extracts was there significant activity at the elution volume where enkephalins would be expected. Fraction tion using Amberlite XAD-2, a resin which selectively absorbs hydrophobic materials, again indicated that the major portion of activit in all tissue extracts was due to substances other than enkephalins.


Naloxone MnCl2 Tissue Extract Tissue Weight Elution Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Terenius, L., andWahlstrom, A. 1974. Inhibitor(s) of narcotic receptor binding in brain extracts and cerebrospinal fluid. Acta Pharmacol. Toxicol. (Suppl.) (Kbh) 35:55.Google Scholar
  2. 2.
    Hughes, J. 1975. Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res. 88:295–308.Google Scholar
  3. 3.
    Pasternak, G. W., Goodman, R., andSnyder, S. H. 1975. An endogenous morphine-like factor in mammalian brain. Life Sci. 16:1765–1769.Google Scholar
  4. 4.
    Teschemacher, H., Opheim, K. E., Cox, B. M., andGoldstein, A. 1975. A peptide-like substance from pituitary that acts like morphine. Life Sci. 16:1171–1175.Google Scholar
  5. 5.
    Queen, G., Pinsky, C., andLaBella, F. 1976. Subcellular localization of endorphin activity in bovine pituitary and brain. Biochem. Biophys. Res. Commun. 72:1021–1027.Google Scholar
  6. 6.
    Terenius, L., andWahlstrom, A. 1975. Morphine-like ligand for opiate receptors in human CSF. Life Sci. 16:1759–1764.Google Scholar
  7. 7.
    Smith, T. W., Hughes, J., Kosterlitz, H. W., andSosa, R. P. 1976. Enkephalins: isolation, distribution and function. Pages 57–62,in Kosterlitz, H. W. (ed.), Opiates and Endogenous Opioid Peptides, North-Holland, Amsterdam.Google Scholar
  8. 8.
    Pert, C. B., Pert A., andTallman, J. F. 1976. Isolation of a novel endogenous opiate analgesic from human blood. Proc. Natl. Acad. Sci. U.S.A. 73:2226–2230.Google Scholar
  9. 9.
    Pert, C. B., andSnyder, S. H. 1973. Properties of opiate-receptor binding in rat brain. Proc. Natl. Acad. Sci. U.S.A. 70:2243–2247.Google Scholar
  10. 10.
    Wajda, I. J., Neidle, A., Ehrenpreis, S., andManigault, I. 1976. Properties and distribution of morphine-like substances. Pages 126–136,in Kosterlitz, H. W. (ed.), Opiates and Endogenous Opioid Peptides, North-Holland, Amsterdam.Google Scholar
  11. 11.
    Wajda, I. J., Neidle, A., andManigault, I. 1977. Endorphins in brain and other tissues. Proc. Am. Soc. Neurochem. 8:80.Google Scholar
  12. 12.
    Neidle, A. Wajda, I. J., andManigault, I. 1977. Morphine-like substances from rat brain. Proc. Am. Soc. Neurochem. 8:81.Google Scholar
  13. 13.
    Pasternak, G. W., Goodman, R., andSnyder, S. H. 1975. An endogenous morphine-like factor in mammalian brain. Life Sci. 16:1765–1769.Google Scholar
  14. 14.
    Pasternak, G. W., Wilson, H. A., andSnyder, S. H. 1975. Differential effects of protein-modifying reagents on receptor binding of opiate agonists and antagonists. Mol. Pharmacol. 11:340–351.Google Scholar
  15. 15.
    Pert, C. B., andSnyder, S. H. 1973. Opiate receptor: Demonstration in nervous tissue. Science. 179:1011–1014.Google Scholar
  16. 16.
    Pasternak, G. W., andSnyder, S. H. 1974. Opiate receptor: Effects of enzymatic treatments. Mol. Pharmacol. 10:183–193.Google Scholar
  17. 17.
    Simon, E. J., Hiller, J. M., Groth, J., andEdelman, I. 1975. Further properties of sterospecific opiate binding sites in rat brain: On the nature of the sodium effect. J. Pharmacol. Exp. Ther. 192:531–437.Google Scholar
  18. 18.
    Pert, C. B., Pasternak, G., andSnyder, S. H. 1973. Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361.Google Scholar
  19. 19.
    Pasternak, G. W., Snowman, A. M., andSnyder, S. H. 1975. Selective enhancement of3H opiate agonist binding by divalent cations. Mol. Pharmacol. 11:735–744.Google Scholar
  20. 20.
    Simantov, R., Goodman, R., Aposhian, D., andSnyder, S. H. 1976. Phylogenetic distribution of a morphine-like peptide “enkephalin”. Brain Res. 111:204–211.Google Scholar
  21. 21.
    Simantov, R., Kuhar, M. J., Pasternak, G. W., andSnyder, S. H. 1976. The regional distribution of a morphine-like factor enkephalin in monkey brain. Brain Res. 106:189–197.Google Scholar
  22. 22.
    Frederickson, R. C. A., Schirmer, E. W., Grinnan, E. L., Harrell, C. E., andHewes, C. R. 1976. Human endorphin: Comparison with porcine endorphin, enkephalin and normorphine. Life Sci. 19:1181–1190.Google Scholar
  23. 23.
    Terenius, L., andWahlstrom, A. 1976. A method for site selective analysis applied to opiate receptors. Eur. J. Pharmacol. 40:241–248.Google Scholar
  24. 24.
    Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., andMorris, H. R. 1975. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–580.Google Scholar
  25. 25.
    Li, C. H., andChung, D. 1976. Isolation and structure of an untrikontapeptide with opiate activity from camel pituitary glands. Proc. Natl. Acad. Sci. U. S. A. 73:1145–1148.Google Scholar
  26. 26.
    Li, C. H., Chung, D., andDoneen, B. A. 1976. Isolation, characterization and opiate activity of beta-endorphin from human pituitary glands. Biochem. Biophys. Res. Commun. 72:1542–1547.Google Scholar
  27. 27.
    Ling, N., andGuillemin, R. 1976. Morphinomimetic activity of synthetic fragments of β-lipotropin and analogs. Proc. Natl. Acad. Sci. U.S.A. 73:3308–3310.Google Scholar
  28. 28.
    Terenius, L., Gispen, W. H., andDe Wied, D. 1975. ACTH-like peptides and opiate receptors in the rat brain: Structure-activity studies. Eur. J. Pharmacol. 33:395–399.Google Scholar
  29. 29.
    Bajusz, S., Ronai, A. Z., Szekely, J. I., Graf, L., Dunai-Kovacs, Z., andBerzetei, I. 1977. A superactive antinociceptive pentapeptide, (D-Met2, Pro5)-enkephalinamide. FEBS Lett. 76:91–92.Google Scholar
  30. 30.
    Yamashiro, D., Tseng, L., andLi, C. H. 1977. D-Thr2, Thz5-and D-Met2, Thz5-enkephalinamides: Potent analgesics by intravenous injection. Biochem. Biophys. Res. Commun. 78:1124–1129.Google Scholar
  31. 31.
    Roemer, D., Buescher, H. H., Hill, R. C., Pless, J., Bauer, W., Cardinaux, F., Closse, A., Hauser, D., andHuguenin, R. 1977. A synthetic enkephalin analogue with prolonged parenteral and oral analgesic activity. Nature 268:547–549.Google Scholar
  32. 32.
    Goldstein, A., Goldstein, J. S., andCox, B. M. 1975. A synthetic peptide with morphine-like pharmacologic action. Life Sci. 17:1653–1654.Google Scholar
  33. 33.
    Simantov, R., andSnyder, S. H. 1976. Brain-pituitary opiate mechanisms: Pituitary opiate receptor binding, radioimmunoassays for methionine enkephalin and leucine enkephalin, and3H-enkephalin interactions with the opiate receptor. Pages 41–48,in Kosterlitz, H. W.. Opiates and Endogenous Opioid Peptides, North-Holland, Amsterdam.Google Scholar
  34. 34.
    Llorens-Cortes, C., Pollard, H., Schwartz, J. C., Pradelled, P. Gros, C., andDray, F. 1977. Endorphins in several regions of rat brain: Large differences between radioimmunoassay and radioreceptor assay. Eur. J. Pharmacol. 46:73–74.Google Scholar
  35. 35.
    LaBella, F. Queen, G., Senyshyn, J., Lis, M., andChretien, M. 1977. Lipotropin: Localization by radioimmunoassay of endorphin precursor in pituitary and brain. Biochem. Biophys. Res. Commun. 75:350–357.Google Scholar
  36. 36.
    Cheung, A. L., Stavinoha, W. B., andGolstein, A. 1976. Endorphins in brains of decapitated and microwave-killed mice. Brain Res. 115:285–296.Google Scholar
  37. 37.
    Lewis, R. V., Stein, S., Gerber, L. D., Rubenstein, M., andUdenfriend, S. 1978. High molecular weight opioid-containing peptides in striatum. Proc. Natl. Acad. Sci. U.S.A. 75:4021–4023.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • A. Neidle
    • 1
  • I. Manigault
    • 1
  • I. J. Wajda
    • 1
  1. 1.Center for NeurochemistryRockland Research InstituteWard's Island

Personalised recommendations